老師,如果把您比作蚌,那么學(xué)生便是蚌里的砂粒。每位教師都有著編寫教案的心路歷程。編寫教案能幫助教師挑選更適當(dāng)?shù)慕虒W(xué)媒體和方法,如何撰寫教案才能夠讓學(xué)生們更重視呢?幼兒教師教育網(wǎng)特意收集和整理了三的倍數(shù)的特征教學(xué)反思,請?jiān)陂喿x后,可以繼續(xù)收藏本頁!
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
1、找準(zhǔn)知識沖突激發(fā)探索愿望。
找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會把“看個(gè)位”這一方法遷移過來。但實(shí)際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、激發(fā)學(xué)習(xí)中的困惑,讓探究走向深入。
找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號為入重點(diǎn),讓孩子們判斷自己的學(xué)號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個(gè)數(shù)的個(gè)位上的數(shù)字有關(guān)。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗(yàn)證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。
3、課后反思使之完美。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后點(diǎn)選了的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個(gè)位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識。
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會把“看個(gè)位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動探究意識,有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應(yīng)用原有的知識。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會和權(quán)利。
yjs21.cOm更多幼師資料編輯推薦
一名合格的人民教師應(yīng)該合理的把握教學(xué)進(jìn)度,每一位教師為了上好課,需要寫教案課件。教案是為完成課程標(biāo)準(zhǔn)所規(guī)定的教學(xué)任務(wù)而準(zhǔn)備的教學(xué)工作計(jì)劃。以下是由幼兒教師教育網(wǎng)編輯為你整理的《5倍數(shù)的特征的教學(xué)反思》,歡迎大家參考閱讀!
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動,指導(dǎo)學(xué)生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。
學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時(shí),我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請結(jié)合舉例說說?!苯酉聛韺?shù)擴(kuò)到百以上,通過各種方式舉正反例通過計(jì)算來驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過舉例來驗(yàn)證。鼓勵(lì)學(xué)生對知識要敢于質(zhì)疑,敢于通過各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問:還有更加簡便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表揚(yáng)了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。
本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會更好。
2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識讓學(xué)生們接受呢?
一、互動、質(zhì)疑,激發(fā)學(xué)生的探究興趣。
好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測驗(yàn)證的過程。
數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)。”而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會大膽猜想,并有方法來驗(yàn)證自己的猜想了。
三、小組合作,發(fā)揮團(tuán)體的作用
動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的'重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們在充分的探索活動中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。
2、5、3的倍數(shù)的特征教學(xué)反思四:
課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:
1.2.3.5倍數(shù)的特征,它們在知識體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”;而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。
2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。
好的開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時(shí)間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。
小組合作,發(fā)揮團(tuán)體的作用,動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會把“看個(gè)位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
把學(xué)生看成自己的孩子,付出的才是真愛,老師們都很會寫教案。教師能更加提高教師的自信心,你知道一份正規(guī)的教學(xué)教案怎么寫嗎?以下“2和5的倍數(shù)的特征教學(xué)反思”由編輯為大家收集整理,本文供你參考,希望能幫到你!
在這節(jié)課中我想掌握5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),所以在制定目標(biāo)的時(shí)候,應(yīng)從數(shù)學(xué)研究方法著手,在學(xué)生掌握知識的同時(shí),注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過程。引導(dǎo)學(xué)生通過猜想驗(yàn)證結(jié)論三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)論,并進(jìn)行應(yīng)用。
在整個(gè)教學(xué)過程中我努力從以下四個(gè)方面來感受數(shù)學(xué)的研究方法。
1、感受范圍意識。
當(dāng)時(shí)我是這樣引導(dǎo)的:2的倍數(shù)有哪些?學(xué)生說:有2、4、6、8、10都是雙數(shù),有無數(shù)個(gè)?我接著問:既然有無數(shù)個(gè),能不能全找出來?學(xué)生說:不能全部找出來,接著我又問:5的倍數(shù)能不能全找出來。學(xué)生說:也不能全找出來。既然它們的倍數(shù)都找不全哪怎么去研究?我把這個(gè)問題拋給學(xué)生去解決,接著就有學(xué)生說:可以選擇一個(gè)范圍來研究。
這樣學(xué)生就有了小范圍的意識,在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,當(dāng)?shù)玫皆?-100這個(gè)范圍內(nèi)5的倍數(shù)的特征的時(shí)候。接著我又引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有自然數(shù)中都使用?還需要驗(yàn)證。在這樣引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)特征,通過共同的驗(yàn)證,最后得到正確的結(jié)論。
在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的范圍意識,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)大范圍,最后得出科學(xué)的結(jié)論。
2、感受猜想與結(jié)論的不同。
教學(xué)中,當(dāng)學(xué)生找到百數(shù)表內(nèi)5的倍數(shù)特征時(shí),我追問學(xué)生,是不是在所有的自然數(shù)中,5的倍數(shù)都有這個(gè)特征呢?學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我告訴學(xué)生是不是有這個(gè)特征,我們沒有研究過,只是我們的猜想。還需要我們進(jìn)一步去驗(yàn)證。大部分學(xué)生還是比較認(rèn)可的。沒有經(jīng)過研究,怎么能知道是呢?有了這樣的猜想,最后通過舉例的方法驗(yàn)證后,學(xué)生沒有找到反例,這時(shí)我才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒有經(jīng)過驗(yàn)證前,只是猜想;只有驗(yàn)證后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過程后,他們才會具備科學(xué)的態(tài)度,才會學(xué)會對自己所說的話負(fù)責(zé),才不會貿(mào)然下結(jié)論。
3、感受學(xué)習(xí)兩種驗(yàn)證方法。
驗(yàn)證的方法有很多種,舉例法、不完全歸納法,推理法等等。根據(jù)孩子的特點(diǎn),我認(rèn)為最適合小學(xué)生的方法便是讓他們學(xué)會舉例的方法。這節(jié)課中,當(dāng)學(xué)生發(fā)現(xiàn)百數(shù)表中,5的倍數(shù)特征后,我引導(dǎo)學(xué)生在所有的自然數(shù)中是不是5的倍數(shù)都有這個(gè)特征?怎樣去驗(yàn)證呢?在這里我預(yù)設(shè)的是學(xué)生可能會說出可以找一些個(gè)位上是5或0的數(shù)用除法來驗(yàn)證。但學(xué)生并沒有出來,他們說的是用乘法來驗(yàn)證。于是我接著學(xué)生的想法,在這里引出了推理的方法,(但是在備課預(yù)設(shè)時(shí)我并沒有想要引出推理)所以講解的并不到位,這是我需要反思的。于是我又引導(dǎo)可以用舉例的方法用除法來驗(yàn)證,尋找有沒有不符合這一特征的例子,全班舉了很多例子,進(jìn)行了驗(yàn)證。最后得出結(jié)論。
4、感受經(jīng)歷完整的研究過程。
這節(jié)課中,當(dāng)學(xué)生研究出5的倍數(shù)的特征后,我引導(dǎo)學(xué)生來回憶。我們是怎樣來研究5的倍數(shù)的特征的?讓學(xué)生體驗(yàn)經(jīng)歷先確定研究范圍選擇研究方法發(fā)現(xiàn)驗(yàn)證結(jié)論這一研究過程。然后在讓學(xué)生獨(dú)立去研究2的倍數(shù)的特征。再次體驗(yàn)2的倍數(shù)的特征研究過程,我想學(xué)生就有了更完整的體驗(yàn)。
通過這節(jié)課的教學(xué),使我認(rèn)識到數(shù)學(xué)課堂教學(xué)活動是一個(gè)活潑的、主動的、豐富多彩的活動空間。教學(xué)后感覺自己這節(jié)課的成功之處有:一是成功的課堂引入。好的開始等于成功了一半。本節(jié)課我是這樣引入的:同學(xué)們,我們前段時(shí)間學(xué)習(xí)了倍數(shù),誰能說幾個(gè)2的倍數(shù)?(只要是對,學(xué)生們隨便說)誰能說幾個(gè)5的倍數(shù)呢?
我們知道,一個(gè)數(shù)的倍數(shù)有無數(shù)個(gè),如果隨機(jī)給你一個(gè)數(shù),有沒有更好的方法來判斷是不是2、5的倍數(shù)呢?有,如果這節(jié)課認(rèn)真聽,你肯定能掌握其中的奧秘。由此引出課題,這樣不但大大地調(diào)動了學(xué)生學(xué)習(xí)積極性,而且順其自然地把探索的問題拋給了學(xué)生,激起了學(xué)生探索的欲望。二是緊密地聯(lián)系學(xué)生的生活。本節(jié)課我充分利用了與學(xué)生生活密切聯(lián)系的學(xué)號,使學(xué)生明白數(shù)學(xué)來源于生活,生活即是數(shù)學(xué)。我安排了請學(xué)號是2的倍數(shù)的同學(xué)舉起左手、請學(xué)號是5的倍數(shù)的同學(xué)舉起右手的練習(xí),以及判斷自己的學(xué)號是不是2或5的倍數(shù)的練習(xí),這些練習(xí)內(nèi)容使枯燥的數(shù)字練習(xí)變得生動了。這即鞏固了學(xué)生對奇數(shù)和偶數(shù)意義的理解。又讓學(xué)生對規(guī)律的運(yùn)用更加靈活了,學(xué)生非常喜歡這樣的形式。真正也讓學(xué)生體會到了數(shù)學(xué)源于生活,生活即數(shù)學(xué)。
不足之處是:在如何有效地組織學(xué)生開展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢利導(dǎo)。在開展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在亂猜。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問題。
《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級教學(xué)能手選撥賽時(shí)候第二次上,可以說是“一課兩上”。我在第二次備課時(shí)完全從另一個(gè)角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:
第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時(shí)我是這樣做的:使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測是不是3的倍數(shù)的特征也要去看數(shù)的個(gè)位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計(jì)數(shù)器進(jìn)行兩個(gè)實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測。
整個(gè)教學(xué)過程突出了對學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會,激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識才能得以培養(yǎng),個(gè)性才能充分發(fā)展。
反思這節(jié)課的不足我覺得在每個(gè)環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會更好。由于本節(jié)課按照賽教要求只有30分鐘,時(shí)間的把握做的還不夠恰到好處??傊虩o定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。
《答謝中書書》是一篇山水小品,僅用了六十八個(gè)字,就概括了古今,包羅了四時(shí)。反映了作者娛情山水的思想。這是一篇很好的課文,對于文章的美,主要采用“讀”的方法來使學(xué)生體會,以“讀”賞“美”,以“美”品“讀”,兩者相互作用,相輔相成。在品析文章的美句時(shí),挖掘文本不夠深入,給人一種蜻蜓點(diǎn)水的感覺。
在讓學(xué)生品析美句時(shí),幾個(gè)學(xué)生都選了“曉霧將散,猿鳥亂鳴;夕日欲頹,沉磷競躍”時(shí),在有學(xué)法指導(dǎo)的前提下,學(xué)生大多局限于“這里是以動寫靜,為畫面增添了靈動感,傳達(dá)了生命氣息”的理解上,應(yīng)該引導(dǎo)學(xué)生而深入挖掘,這里的‘亂鳴”是一種嘈雜的聲音嗎?這時(shí)學(xué)生也該明白,這是一種隨意的聲音。接下來就趁勢引導(dǎo),作者在這里是不是只是告訴我們這是一種大自然的隨意的和諧的聲音呢?結(jié)合陶弘景的背景資料,讓學(xué)生明白,作者刻畫這種真實(shí)的潔凈的聲音,它們發(fā)出的這種聲音不是為了名、為了利,既不是奉迎拍馬之聲,也不是爭權(quán)奪利。從這里就可以體會出作者的情懷:淡泊名利,喜歡真實(shí)的潔凈的大自然,自己居身其中的歡快愉悅悠然自得的心情。
在教授過程中雖然注重了學(xué)法的指導(dǎo),但學(xué)生并沒有在具體的賞析中實(shí)踐運(yùn)用好,反而局限了他們的思維,最主要的原因是老師隨機(jī)應(yīng)變,因勢利導(dǎo)做得不夠好,在以后的教學(xué)過程中應(yīng)該注意多做多練的。
再有課堂進(jìn)程慢,課堂效率低是我授課過程中長期存在的問題。本節(jié)課在設(shè)計(jì)時(shí)是打算當(dāng)堂成誦和鞏固練習(xí)的,但是課堂效率遠(yuǎn)不如預(yù)計(jì)的高。今后的教學(xué)過程中,應(yīng)該盡量避免。
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性??上г谶@一點(diǎn)上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
這堂課要引導(dǎo)孩子探索2、5的倍數(shù)的特征,在出示百數(shù)圖之前,引導(dǎo)學(xué)生思考我們怎樣去找2、5的倍數(shù)的特征、我們采取什么方法去找2、5的倍數(shù)的特征?整節(jié)課實(shí)際就是讓學(xué)生經(jīng)歷觀察操作討論驗(yàn)證得出結(jié)論解決問題的探究過程,實(shí)現(xiàn)課程、師生、知識等多層次的互動。整個(gè)教學(xué)力求把知識的傳授、思維的訓(xùn)練、學(xué)習(xí)方法的指導(dǎo)、學(xué)習(xí)能力的培養(yǎng)、數(shù)學(xué)思想方法的滲透有機(jī)融為一體,同時(shí)還要充分發(fā)揮學(xué)生的主體作用,讓學(xué)生在活動中學(xué)習(xí)數(shù)學(xué),使學(xué)生真正感受到學(xué)習(xí)數(shù)學(xué)的樂趣。密切聯(lián)系學(xué)生的生活實(shí)際,比如:讓學(xué)生寫電話號碼,列舉生活中的數(shù)等,使學(xué)生真正領(lǐng)略到數(shù)學(xué)就在我們身邊,生活中處處有數(shù)學(xué)。反思本節(jié)課的教學(xué),我也發(fā)現(xiàn)有許多環(huán)節(jié)處理極不得當(dāng),有待進(jìn)一步改進(jìn)。如學(xué)生提出最小的偶數(shù)是什么?其實(shí)我們沒有必要在這個(gè)問題上花很多的時(shí)間,因?yàn)樾W(xué)階段我們只在0除外的自然數(shù)范圍內(nèi)研究倍數(shù)和因數(shù)。所以我們現(xiàn)在只能在這個(gè)范圍內(nèi)說最小的偶數(shù)是2.其他也不適于多說,以免讓學(xué)生混亂。
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動探究意識,有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應(yīng)用原有的知識。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會和權(quán)利。
從以上的教學(xué)過程中,可以看到掌握2、5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),在制定目標(biāo)的時(shí)候,還從數(shù)學(xué)研究方法這個(gè)方面著手,在學(xué)生掌握知識的同時(shí),更注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過程。
我們知道,一堂課的知識目標(biāo)是很容易達(dá)成的,但是如果要滲透數(shù)學(xué)思想方法或科學(xué)的研究方法,往往會給我們一線教師帶來很多困難。在這節(jié)課中,教師引導(dǎo)學(xué)生通過猜想驗(yàn)證結(jié)論三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)果,并進(jìn)行應(yīng)用。
1、滲透范圍意識。
當(dāng)我們說要研究2、5的倍數(shù)的特征時(shí),學(xué)生想當(dāng)然地會認(rèn)為只要一個(gè)數(shù)一個(gè)數(shù)地研究就可以了。如果讓他們實(shí)際操作,他們很可能會寫了幾個(gè)數(shù)后,就下結(jié)論,當(dāng)然這時(shí)候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會肯定學(xué)生的結(jié)論,然后進(jìn)行練習(xí)鞏固。
但是教師并沒有滿足于此,而是抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度。僅僅幾個(gè)數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項(xiàng)結(jié)論的得出不是這樣草率的。如果教師如此這般教學(xué),一次兩次不要緊,長久以來,學(xué)生也會形成草率的態(tài)度,以偏概全,缺乏一種科學(xué)的嚴(yán)謹(jǐn),這是很可怕的。
所以我們看到,首先教師引導(dǎo)學(xué)生確定了小范圍的意識,在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,得到在1-100這個(gè)范圍內(nèi)5的倍數(shù)的特征,個(gè)位上的數(shù)字是5或0。這時(shí)候教師沒有滿足于此,而是引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來在教師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。只有進(jìn)行了研究,才能得到正確的結(jié)論,最后在學(xué)習(xí)和生活中進(jìn)行應(yīng)用。
在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的范圍意識,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。相信長此以往,學(xué)生會逐漸明確范圍意識,建立科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度的。
2、感受猜想與結(jié)論的不同。
在教學(xué)2、5的倍數(shù)的特征之前,教師找了幾個(gè)學(xué)生訪談,想了解學(xué)生學(xué)習(xí)的前在狀態(tài),當(dāng)然所找的學(xué)生是各種層次都有的。對于2、5的倍數(shù)的特征,應(yīng)該說比較簡單,所以中等學(xué)生和優(yōu)等生都已經(jīng)知道了它們的特征2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個(gè)別學(xué)困生一無所知。同時(shí)有個(gè)奇怪的現(xiàn)象,所有知道這個(gè)結(jié)論的同學(xué)都認(rèn)為這個(gè)結(jié)論非常正確,以后就能用這個(gè)結(jié)論來進(jìn)行判斷,不需要進(jìn)行驗(yàn)證,當(dāng)然他們的結(jié)論獲得也僅僅是知道的過程,沒有經(jīng)歷探究過程。如果長此以往,學(xué)生僅僅是知識的接受者,而不是知識的探究者,以后將只習(xí)慣于被動接受,而不會主動發(fā)現(xiàn)。
所以,在教學(xué)中,當(dāng)學(xué)生找到1-100內(nèi)2和5的倍數(shù)特征時(shí),教師追問學(xué)生,是不是比100大的自然數(shù)中,也有這個(gè)特征呢?學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我們看到,教師告訴學(xué)生是不是有這個(gè)特征,我們沒有研究過,所以只是我們的猜想。當(dāng)教師一點(diǎn)撥后,大部分學(xué)生還是比較認(rèn)可的。確實(shí),沒有經(jīng)過研究,怎么能知道是呢?
有了這樣的猜想,最后通過舉例的方法驗(yàn)證后,學(xué)生沒有找到反例,這時(shí)教師才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒有經(jīng)過驗(yàn)證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過程后,他們才會具備科學(xué)的態(tài)度,才會學(xué)會對自己所說的話負(fù)責(zé),才不會貿(mào)然下結(jié)論,當(dāng)然我們教師也要鼓勵(lì)學(xué)生大膽猜想。
從這節(jié)課中,我們看到,當(dāng)學(xué)生擴(kuò)大范圍,研究比100大的5的倍數(shù)的特征時(shí),教師就引導(dǎo)可以用舉例的方法來研究,尋找有沒有不符合這一特征的例子,如果有,說明一開始的猜想是錯(cuò)誤的;全班舉了無數(shù)個(gè)例子,如果沒有,那么在小學(xué)階段,可以認(rèn)為是正確的。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會大膽猜想,并有方法來驗(yàn)證自己的猜想了。
隨著時(shí)代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學(xué)目標(biāo)時(shí),不要再僅僅關(guān)注學(xué)生知識目標(biāo),更重要的是要關(guān)注學(xué)生的能力目標(biāo),只有從小培養(yǎng),從小滲透,那么我們學(xué)生對數(shù)學(xué)的認(rèn)識才會更深刻,也才會在數(shù)學(xué)上有更大的造詣。
一名合格的人民教師應(yīng)該合理的把握教學(xué)進(jìn)度,教案要根據(jù)教學(xué)原則和教材特點(diǎn),結(jié)合學(xué)生具體情況進(jìn)行編寫。教案幫助老師提升教學(xué)能力。以下為欄目小編為你收集整理的北師大版3的倍數(shù)的特征教學(xué)反思,更多信息請繼續(xù)關(guān)注我們的網(wǎng)站!
這學(xué)期,有幸參與學(xué)校第二屆骨干教師引領(lǐng),青年教師成長課堂教學(xué)活動,我感到自己成長了一些。我作課的課題是蘇教版《數(shù)學(xué)》四年級下冊第九章的《2、5的倍數(shù)的特征》,通過這節(jié)課的教學(xué),使我認(rèn)識到數(shù)學(xué)課堂教學(xué)活動是一個(gè)活潑的、主動的、豐富多彩的活動空間。教學(xué)后感覺自己這節(jié)課的成功之處有:一是成功的課堂引入。好的開始等于成功了一半。本節(jié)課我是這樣引入的:請同學(xué)們按照從小到大的順序,寫出20以內(nèi)2、5的倍數(shù)。這是復(fù)習(xí)了找一個(gè)數(shù)的倍數(shù)的方法,為下面的學(xué)習(xí)做好鋪墊。以舊拓新,承上啟下,這是一種由已知導(dǎo)向未知的導(dǎo)入方法,使學(xué)生感到新知識并不陌生,從而降低學(xué)習(xí)新知識的難度,做好必要的準(zhǔn)備。20以內(nèi)5的倍數(shù)有幾個(gè)?5的倍數(shù)在20以內(nèi)只有4個(gè),那100以內(nèi),5的倍數(shù)有哪些呢?這樣順其自然地把探索的問題拋給了學(xué)生,激起了學(xué)生探索的欲望。二是培養(yǎng)學(xué)生良好的做題習(xí)慣。本節(jié)課我時(shí)刻注意著學(xué)生做題習(xí)慣的養(yǎng)成,在找一個(gè)數(shù)的倍數(shù)或者是判斷一個(gè)數(shù)是偶數(shù)還是奇數(shù),都要求學(xué)生按照一定的順序去做題,使學(xué)生明白有序做題的好處。三是練習(xí)內(nèi)容多樣。幫助青蛙過河、放氣球活動,組數(shù)比賽,這些練習(xí)內(nèi)容使枯燥的數(shù)字練習(xí)變得生動有趣。
不足之處有:一,在探索2、5的倍數(shù)的特征時(shí),給學(xué)生觀察的時(shí)間較少;二,在教學(xué)5的倍數(shù)的特征時(shí),如果能歸納一下找5的倍數(shù)的特征的方法,再放手學(xué)生按照那樣的方法去找2的倍數(shù)的特征,那就更好了;三、要提高提問技巧;四,組數(shù)這部分,我在備課時(shí),認(rèn)為這組數(shù)知識與我們在學(xué)習(xí)排列時(shí)的組數(shù)知識差不多,覺得本班學(xué)生沒有卡片的操作下,也可以組出那些數(shù),就沒有制作卡片。教學(xué)過后,我覺得還是制作卡片比較好,讓他們通過實(shí)物操作,找出規(guī)律。這樣通過學(xué)生自己的親身感受、自我探索獲得的知識,才會根深蒂固地扎根在腦海中。五,在如何有效地組織學(xué)生開展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢利導(dǎo)。在開展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在亂猜。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問題;六,激勵(lì)語言還不夠;七,語言組織表達(dá)能力還有待加強(qiáng)。
我認(rèn)識到自己各方面的不足,以后我會努力提高自身的素質(zhì),不斷地提高教育、教學(xué)水平的。我們要準(zhǔn)確把握教學(xué)目標(biāo),從學(xué)生已有的知識基礎(chǔ)、生活經(jīng)驗(yàn)、認(rèn)知規(guī)律和心理特征設(shè)計(jì)教學(xué)。找準(zhǔn)教學(xué)的起點(diǎn)、突出教學(xué)的重點(diǎn)、突破教學(xué)的難點(diǎn)、捕捉教學(xué)的生長點(diǎn),處處體現(xiàn)以人為本的學(xué)生發(fā)展觀。
這堂課要引導(dǎo)孩子探索2、5的倍數(shù)的特征,在出示百數(shù)圖之前,引導(dǎo)學(xué)生思考我們怎樣去找2、5的倍數(shù)的特征、我們采取什么方法去找2、5的倍數(shù)的特征?整節(jié)課實(shí)際就是讓學(xué)生經(jīng)歷觀察操作討論驗(yàn)證得出結(jié)論解決問題的探究過程,實(shí)現(xiàn)課程、師生、知識等多層次的互動。整個(gè)教學(xué)力求把知識的傳授、思維的訓(xùn)練、學(xué)習(xí)方法的指導(dǎo)、學(xué)習(xí)能力的培養(yǎng)、數(shù)學(xué)思想方法的滲透有機(jī)融為一體,同時(shí)還要充分發(fā)揮學(xué)生的主體作用,讓學(xué)生在活動中學(xué)習(xí)數(shù)學(xué),使學(xué)生真正感受到學(xué)習(xí)數(shù)學(xué)的樂趣。密切聯(lián)系學(xué)生的生活實(shí)際,比如:讓學(xué)生寫電話號碼,列舉生活中的數(shù)等,使學(xué)生真正領(lǐng)略到數(shù)學(xué)就在我們身邊,生活中處處有數(shù)學(xué)。反思本節(jié)課的教學(xué),我也發(fā)現(xiàn)有許多環(huán)節(jié)處理極不得當(dāng),有待進(jìn)一步改進(jìn)。如學(xué)生提出最小的偶數(shù)是什么?其實(shí)我們沒有必要在這個(gè)問題上花很多的時(shí)間,因?yàn)樾W(xué)階段我們只在0除外的自然數(shù)范圍內(nèi)研究倍數(shù)和因數(shù)。所以我們現(xiàn)在只能在這個(gè)范圍內(nèi)說最小的偶數(shù)是2.其他也不適于多說,以免讓學(xué)生混亂。
在這節(jié)課中我想掌握5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),所以在制定目標(biāo)的時(shí)候,應(yīng)從數(shù)學(xué)研究方法著手,在學(xué)生掌握知識的同時(shí),注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過程。引導(dǎo)學(xué)生通過猜想驗(yàn)證結(jié)論三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)論,并進(jìn)行應(yīng)用。
在整個(gè)教學(xué)過程中我努力從以下四個(gè)方面來感受數(shù)學(xué)的研究方法。
1、感受范圍意識。
當(dāng)時(shí)我是這樣引導(dǎo)的:2的倍數(shù)有哪些?學(xué)生說:有2、4、6、8、10都是雙數(shù),有無數(shù)個(gè)?我接著問:既然有無數(shù)個(gè),能不能全找出來?學(xué)生說:不能全部找出來,接著我又問:5的倍數(shù)能不能全找出來。學(xué)生說:也不能全找出來。既然它們的倍數(shù)都找不全哪怎么去研究?我把這個(gè)問題拋給學(xué)生去解決,接著就有學(xué)生說:可以選擇一個(gè)范圍來研究。
這樣學(xué)生就有了小范圍的意識,在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,當(dāng)?shù)玫皆?-100這個(gè)范圍內(nèi)5的倍數(shù)的特征的時(shí)候。接著我又引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有自然數(shù)中都使用?還需要驗(yàn)證。在這樣引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)特征,通過共同的驗(yàn)證,最后得到正確的結(jié)論。
在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的范圍意識,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)大范圍,最后得出科學(xué)的結(jié)論。
2、感受猜想與結(jié)論的不同。
教學(xué)中,當(dāng)學(xué)生找到百數(shù)表內(nèi)5的倍數(shù)特征時(shí),我追問學(xué)生,是不是在所有的自然數(shù)中,5的倍數(shù)都有這個(gè)特征呢?學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我告訴學(xué)生是不是有這個(gè)特征,我們沒有研究過,只是我們的猜想。還需要我們進(jìn)一步去驗(yàn)證。大部分學(xué)生還是比較認(rèn)可的。沒有經(jīng)過研究,怎么能知道是呢?有了這樣的猜想,最后通過舉例的方法驗(yàn)證后,學(xué)生沒有找到反例,這時(shí)我才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒有經(jīng)過驗(yàn)證前,只是猜想;只有驗(yàn)證后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過程后,他們才會具備科學(xué)的態(tài)度,才會學(xué)會對自己所說的話負(fù)責(zé),才不會貿(mào)然下結(jié)論。
3、感受學(xué)習(xí)兩種驗(yàn)證方法。
驗(yàn)證的方法有很多種,舉例法、不完全歸納法,推理法等等。根據(jù)孩子的特點(diǎn),我認(rèn)為最適合小學(xué)生的方法便是讓他們學(xué)會舉例的方法。這節(jié)課中,當(dāng)學(xué)生發(fā)現(xiàn)百數(shù)表中,5的倍數(shù)特征后,我引導(dǎo)學(xué)生在所有的自然數(shù)中是不是5的倍數(shù)都有這個(gè)特征?怎樣去驗(yàn)證呢?在這里我預(yù)設(shè)的是學(xué)生可能會說出可以找一些個(gè)位上是5或0的數(shù)用除法來驗(yàn)證。但學(xué)生并沒有出來,他們說的是用乘法來驗(yàn)證。于是我接著學(xué)生的想法,在這里引出了推理的方法,(但是在備課預(yù)設(shè)時(shí)我并沒有想要引出推理)所以講解的并不到位,這是我需要反思的。于是我又引導(dǎo)可以用舉例的方法用除法來驗(yàn)證,尋找有沒有不符合這一特征的例子,全班舉了很多例子,進(jìn)行了驗(yàn)證。最后得出結(jié)論。
4、感受經(jīng)歷完整的研究過程。
這節(jié)課中,當(dāng)學(xué)生研究出5的倍數(shù)的特征后,我引導(dǎo)學(xué)生來回憶。我們是怎樣來研究5的倍數(shù)的特征的?讓學(xué)生體驗(yàn)經(jīng)歷先確定研究范圍選擇研究方法發(fā)現(xiàn)驗(yàn)證結(jié)論這一研究過程。然后在讓學(xué)生獨(dú)立去研究2的倍數(shù)的特征。再次體驗(yàn)2的倍數(shù)的特征研究過程,我想學(xué)生就有了更完整的體驗(yàn)。
從以上的教學(xué)過程中,可以看到掌握2、5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),在制定目標(biāo)的時(shí)候,還從數(shù)學(xué)研究方法這個(gè)方面著手,在學(xué)生掌握知識的同時(shí),更注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過程。
我們知道,一堂課的知識目標(biāo)是很容易達(dá)成的,但是如果要滲透數(shù)學(xué)思想方法或科學(xué)的研究方法,往往會給我們一線教師帶來很多困難。在這節(jié)課中,教師引導(dǎo)學(xué)生通過猜想驗(yàn)證結(jié)論三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)果,并進(jìn)行應(yīng)用。
1、滲透范圍意識。
當(dāng)我們說要研究2、5的倍數(shù)的特征時(shí),學(xué)生想當(dāng)然地會認(rèn)為只要一個(gè)數(shù)一個(gè)數(shù)地研究就可以了。如果讓他們實(shí)際操作,他們很可能會寫了幾個(gè)數(shù)后,就下結(jié)論,當(dāng)然這時(shí)候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會肯定學(xué)生的結(jié)論,然后進(jìn)行練習(xí)鞏固。
但是教師并沒有滿足于此,而是抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度。僅僅幾個(gè)數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項(xiàng)結(jié)論的得出不是這樣草率的。如果教師如此這般教學(xué),一次兩次不要緊,長久以來,學(xué)生也會形成草率的態(tài)度,以偏概全,缺乏一種科學(xué)的嚴(yán)謹(jǐn),這是很可怕的。
所以我們看到,首先教師引導(dǎo)學(xué)生確定了小范圍的意識,在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,得到在1-100這個(gè)范圍內(nèi)5的倍數(shù)的特征,個(gè)位上的數(shù)字是5或0。這時(shí)候教師沒有滿足于此,而是引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來在教師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。只有進(jìn)行了研究,才能得到正確的結(jié)論,最后在學(xué)習(xí)和生活中進(jìn)行應(yīng)用。
在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的范圍意識,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。相信長此以往,學(xué)生會逐漸明確范圍意識,建立科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度的。
2、感受猜想與結(jié)論的不同。
在教學(xué)2、5的倍數(shù)的特征之前,教師找了幾個(gè)學(xué)生訪談,想了解學(xué)生學(xué)習(xí)的前在狀態(tài),當(dāng)然所找的學(xué)生是各種層次都有的。對于2、5的倍數(shù)的特征,應(yīng)該說比較簡單,所以中等學(xué)生和優(yōu)等生都已經(jīng)知道了它們的特征2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個(gè)別學(xué)困生一無所知。同時(shí)有個(gè)奇怪的現(xiàn)象,所有知道這個(gè)結(jié)論的同學(xué)都認(rèn)為這個(gè)結(jié)論非常正確,以后就能用這個(gè)結(jié)論來進(jìn)行判斷,不需要進(jìn)行驗(yàn)證,當(dāng)然他們的結(jié)論獲得也僅僅是知道的過程,沒有經(jīng)歷探究過程。如果長此以往,學(xué)生僅僅是知識的接受者,而不是知識的探究者,以后將只習(xí)慣于被動接受,而不會主動發(fā)現(xiàn)。
所以,在教學(xué)中,當(dāng)學(xué)生找到1-100內(nèi)2和5的倍數(shù)特征時(shí),教師追問學(xué)生,是不是比100大的自然數(shù)中,也有這個(gè)特征呢?學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我們看到,教師告訴學(xué)生是不是有這個(gè)特征,我們沒有研究過,所以只是我們的猜想。當(dāng)教師一點(diǎn)撥后,大部分學(xué)生還是比較認(rèn)可的。確實(shí),沒有經(jīng)過研究,怎么能知道是呢?
有了這樣的猜想,最后通過舉例的方法驗(yàn)證后,學(xué)生沒有找到反例,這時(shí)教師才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒有經(jīng)過驗(yàn)證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過程后,他們才會具備科學(xué)的態(tài)度,才會學(xué)會對自己所說的話負(fù)責(zé),才不會貿(mào)然下結(jié)論,當(dāng)然我們教師也要鼓勵(lì)學(xué)生大膽猜想。
從這節(jié)課中,我們看到,當(dāng)學(xué)生擴(kuò)大范圍,研究比100大的5的倍數(shù)的特征時(shí),教師就引導(dǎo)可以用舉例的方法來研究,尋找有沒有不符合這一特征的例子,如果有,說明一開始的猜想是錯(cuò)誤的;全班舉了無數(shù)個(gè)例子,如果沒有,那么在小學(xué)階段,可以認(rèn)為是正確的。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會大膽猜想,并有方法來驗(yàn)證自己的猜想了。
隨著時(shí)代的發(fā)展,隨著新課改的不斷深入,我們教師在制定教學(xué)目標(biāo)時(shí),不要再僅僅關(guān)注學(xué)生知識目標(biāo),更重要的是要關(guān)注學(xué)生的能力目標(biāo),只有從小培養(yǎng),從小滲透,那么我們學(xué)生對數(shù)學(xué)的認(rèn)識才會更深刻,也才會在數(shù)學(xué)上有更大的造詣。
幼兒教師教育網(wǎng)欄目精選:“倍數(shù)特征教學(xué)反思”,歡迎閱讀。
2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識讓學(xué)生們接受呢?
一、互動、質(zhì)疑,激發(fā)學(xué)生的探究興趣。
好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測驗(yàn)證的過程。
數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)。”而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會大膽猜想,并有方法來驗(yàn)證自己的猜想了。
三、小組合作,發(fā)揮團(tuán)體的作用
動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的'重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們在充分的探索活動中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。
2、5、3的倍數(shù)的特征教學(xué)反思四:
課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:
1.2.3.5倍數(shù)的特征,它們在知識體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”;而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。
2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。
好的開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時(shí)間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。
小組合作,發(fā)揮團(tuán)體的作用,動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。
《答謝中書書》是一篇山水小品,僅用了六十八個(gè)字,就概括了古今,包羅了四時(shí)。反映了作者娛情山水的思想。這是一篇很好的課文,對于文章的美,主要采用“讀”的方法來使學(xué)生體會,以“讀”賞“美”,以“美”品“讀”,兩者相互作用,相輔相成。在品析文章的美句時(shí),挖掘文本不夠深入,給人一種蜻蜓點(diǎn)水的感覺。
在讓學(xué)生品析美句時(shí),幾個(gè)學(xué)生都選了“曉霧將散,猿鳥亂鳴;夕日欲頹,沉磷競躍”時(shí),在有學(xué)法指導(dǎo)的前提下,學(xué)生大多局限于“這里是以動寫靜,為畫面增添了靈動感,傳達(dá)了生命氣息”的理解上,應(yīng)該引導(dǎo)學(xué)生而深入挖掘,這里的‘亂鳴”是一種嘈雜的聲音嗎?這時(shí)學(xué)生也該明白,這是一種隨意的聲音。接下來就趁勢引導(dǎo),作者在這里是不是只是告訴我們這是一種大自然的隨意的和諧的聲音呢?結(jié)合陶弘景的背景資料,讓學(xué)生明白,作者刻畫這種真實(shí)的潔凈的聲音,它們發(fā)出的這種聲音不是為了名、為了利,既不是奉迎拍馬之聲,也不是爭權(quán)奪利。從這里就可以體會出作者的情懷:淡泊名利,喜歡真實(shí)的潔凈的大自然,自己居身其中的歡快愉悅悠然自得的心情。
在教授過程中雖然注重了學(xué)法的指導(dǎo),但學(xué)生并沒有在具體的賞析中實(shí)踐運(yùn)用好,反而局限了他們的思維,最主要的原因是老師隨機(jī)應(yīng)變,因勢利導(dǎo)做得不夠好,在以后的教學(xué)過程中應(yīng)該注意多做多練的。
再有課堂進(jìn)程慢,課堂效率低是我授課過程中長期存在的問題。本節(jié)課在設(shè)計(jì)時(shí)是打算當(dāng)堂成誦和鞏固練習(xí)的,但是課堂效率遠(yuǎn)不如預(yù)計(jì)的高。今后的教學(xué)過程中,應(yīng)該盡量避免。
欄目小編特地為大家精心收集和整理了“3的倍數(shù)的特征教學(xué)反思”。時(shí)時(shí)保持敬業(yè)精神,處處關(guān)心學(xué)生學(xué)習(xí)生活,教學(xué)過程是一個(gè)完整的系統(tǒng),教案也是一樣。教師在教學(xué)的過程中要做到胸有成竹,就需要一份教案。為防遺忘,建議你收藏本頁!
今天教學(xué)了2、5倍數(shù)的特征一課,課前我們印制了百數(shù)圖發(fā)給學(xué)生并布置了預(yù)習(xí)作業(yè),讓學(xué)生在百數(shù)圖上分別畫出2的倍數(shù)和5的倍數(shù),分別觀察2的倍數(shù)有什么特征,5的倍數(shù)有什么特征,因?yàn)檫@課的知識點(diǎn)的發(fā)現(xiàn)相對還是較簡單的,課始讓學(xué)生小組交流自己找到的數(shù)對不對,交流自己觀察到的特征。全班交流時(shí)我發(fā)現(xiàn)大家說得都很好,找到了100以內(nèi)2的倍數(shù)和5的倍數(shù)的特征,教師提問:是不是只要是2的倍數(shù)、5的倍數(shù)是否都有這樣的特征呢?學(xué)生找了100以外的數(shù)進(jìn)行了驗(yàn)證,一致得出只要是2的倍數(shù)、5的倍數(shù)都有這樣的特征。接著我讓男生出數(shù)讓女生判斷男生出的數(shù)是否是2的倍數(shù)或5的倍數(shù)并說明理由,這樣的游戲也能讓孩子們高興一把,在這樣的活動中也能提高學(xué)生運(yùn)用知識的能力。對于奇數(shù)、偶數(shù)的概念教學(xué)還是比較容易的,因?yàn)樵趯W(xué)生印象中已有了單數(shù)、雙數(shù)的概念,我們這一課只要把學(xué)生已有的這一概念擴(kuò)充到2的倍數(shù)都是偶數(shù)(雙數(shù)),不是2的倍數(shù)都是奇數(shù)(單數(shù))就可以了,有些學(xué)生還總結(jié)出個(gè)位是1、3、5、7、或9的數(shù)是奇數(shù)。但在補(bǔ)充習(xí)題上,讓學(xué)生寫出5個(gè)奇數(shù),學(xué)生中出現(xiàn)只寫5的倍數(shù)如:5、10、15、20、25,或根據(jù)5的倍數(shù)來寫奇數(shù)如:5、15、25、35、45、55.第一種是明顯錯(cuò)的,沒有審清題意,混淆了5的額倍數(shù)與奇數(shù)的概念,第二種寫法雖說是對的,但看著總有些別扭,喊學(xué)生問了問,有些是懂得,有些還是如前面一樣混淆了概念。正如有些學(xué)生學(xué)了2的倍數(shù)、5的倍數(shù)的特征后,還是不會運(yùn)用這些特征去判斷一個(gè)數(shù)是否是2的倍數(shù)或5的倍數(shù)一樣。學(xué)以致用才能體現(xiàn)出教與學(xué)的成功。
課的一開始,復(fù)習(xí)倍數(shù)的有關(guān)的知識,為新課學(xué)習(xí)作好鋪墊。接著我設(shè)計(jì)了這樣一個(gè)問題:我不用計(jì)算就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?不信就請你們?nèi)我庹f出一個(gè)數(shù)來考考老師。這樣引入課題,不但大大地調(diào)動了學(xué)生學(xué)習(xí)積極性,而且能激起了學(xué)生探索的欲望。下面通過呈現(xiàn)“百數(shù)表”,讓學(xué)生從表中找出2和5的倍數(shù),并用不同的符號分別圈出,在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察這些數(shù),找出它們的特點(diǎn)。我在學(xué)生總結(jié)出2的倍數(shù)的特征后,揭示偶數(shù)和奇數(shù)的含義。總結(jié)出5的倍數(shù)特征后,緊接著又讓學(xué)生繼續(xù)觀察,找一找2的倍數(shù)和5的倍數(shù)有沒有相同的數(shù),然后再看看這些數(shù)又有什么特點(diǎn)。學(xué)生很快就發(fā)現(xiàn)了既是2的倍數(shù)又是5的倍數(shù)的特征。從課堂效果來看,學(xué)生基本上是可以獨(dú)立發(fā)現(xiàn)的。教學(xué)中,我也留給學(xué)生充足的時(shí)間,放手讓學(xué)生自主發(fā)現(xiàn),學(xué)生在體驗(yàn)中獲取了知識,有效地提高了學(xué)習(xí)的質(zhì)量。
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個(gè)重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位就能判斷一個(gè)數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時(shí),自然會把“看個(gè)位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2、經(jīng)歷過程,授之以漁
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個(gè)位上可能是10個(gè)數(shù)字中的任何一個(gè),之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個(gè)規(guī)律。最后,引導(dǎo)學(xué)生理解這個(gè)結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
3、追求本真,知其所以然
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時(shí)間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個(gè)性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。
新的課程理念要求我們在教學(xué)中盡可能地為學(xué)生提供一個(gè)自主、合作、探究機(jī)會,其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運(yùn)用知識去解決問題的能力,在研究和解決問題的過程中學(xué)會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵(lì)學(xué)生大膽猜想,動手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。
本課主要使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,進(jìn)而產(chǎn)生新的探索欲望,突出了對學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。當(dāng)然,培養(yǎng)學(xué)生的創(chuàng)造個(gè)性,僅僅停留在教學(xué)活動的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會,激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識才能得以培養(yǎng),個(gè)性才能充分發(fā)展。本課重點(diǎn)是要理解3的倍數(shù)特征,能夠準(zhǔn)確判斷一個(gè)數(shù)是不是3的倍數(shù)。我采用的是復(fù)習(xí)導(dǎo)入,先和學(xué)生們一起回憶了一下
2、5的倍數(shù)特征,然后出示本課的教學(xué)目標(biāo)。新授環(huán)節(jié)先讓學(xué)生猜測一下3的倍數(shù)會有哪些特征呢?接著采用數(shù)形結(jié)合的方法,學(xué)生動手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的符號圈起來,然后觀察小組討論匯報(bào)。發(fā)現(xiàn)3的倍數(shù)特征不像
2、5的倍數(shù)特征一樣,看一個(gè)數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個(gè)數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會清楚敘述出3的倍數(shù)特征是一個(gè)數(shù)各個(gè)數(shù)位上數(shù)字相加的和。找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。
2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識讓學(xué)生們接受呢?
一、互動、質(zhì)疑,激發(fā)學(xué)生的探究興趣。
好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測驗(yàn)證的過程。
數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)?!倍@只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會大膽猜想,并有方法來驗(yàn)證自己的猜想了。
三、小組合作,發(fā)揮團(tuán)體的作用
動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的'重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們在充分的探索活動中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。
2、5、3的倍數(shù)的特征教學(xué)反思四:
課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:
1.2.3.5倍數(shù)的特征,它們在知識體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”;而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。
2、3、5倍數(shù)的特征我設(shè)計(jì)的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學(xué)生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,但我由于對教材的把握不夠,時(shí)間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。
好的開始等于成功了一半。課伊始,我設(shè)計(jì)了搶“30”的游戲,目的是讓學(xué)生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個(gè)游戲沒讓學(xué)生部明白要求沒有能提高學(xué)生的興趣。意義不到。數(shù)學(xué)學(xué)習(xí)過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗(yàn)證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學(xué)生獨(dú)圈出寫出100以內(nèi)2、5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。但我對這部分的處理太過于復(fù)雜零碎。以至于用的時(shí)間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點(diǎn)。
小組合作,發(fā)揮團(tuán)體的作用,動手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學(xué)生的之一能力傾聽能等等還需進(jìn)一步訓(xùn)練。
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動,指導(dǎo)學(xué)生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。可惜在這一點(diǎn)上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。
本節(jié)課的學(xué)習(xí)設(shè)計(jì)從學(xué)生已有的知識經(jīng)驗(yàn)出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生經(jīng)歷觀察、歸納、類比、猜想、交流、驗(yàn)證、反思等數(shù)學(xué)活動,獲得基本的數(shù)學(xué)知識和技能,發(fā)展思維能力,激發(fā)學(xué)習(xí)的'興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。
正確的教學(xué)觀念,恰當(dāng)?shù)慕虒W(xué)設(shè)計(jì),使課堂生動活潑,成效顯著。主要體現(xiàn)了以下幾個(gè)優(yōu)點(diǎn):
一、以人為本,尊重學(xué)生,真正把學(xué)生放到學(xué)習(xí)的主體地位中
“興趣是學(xué)習(xí)的最好動力?!睂W(xué)生始終保持著昂揚(yáng)的學(xué)習(xí)興趣和斗志。教師也真正做到了以人為本,尊重學(xué)生的個(gè)性發(fā)展。這就是本節(jié)課最大的成功。
二、細(xì)節(jié)講究珠圓玉潤、相得益彰
每個(gè)細(xì)節(jié)都能從整體上加以考慮,能做到銜接得體自然。例如:奇偶數(shù)組成整個(gè)自然數(shù),在百數(shù)表中以及在辨別奇偶數(shù)以后都有提問并進(jìn)行強(qiáng)化。又如:在學(xué)習(xí)既是2的倍數(shù)又是5的倍數(shù)這個(gè)環(huán)節(jié),采用先找出2的倍數(shù),再找5的倍數(shù)的方法,然后動態(tài)展示集合圈的交集既是2的倍數(shù)又是5的倍數(shù),在不揭示“公倍數(shù)”這一概念的學(xué)習(xí)要求下,讓學(xué)感知“公倍數(shù)”這一特點(diǎn),為下一步學(xué)習(xí)打下良好的基礎(chǔ)。
三、各個(gè)環(huán)節(jié)的處理詳略得當(dāng)、環(huán)環(huán)相扣
注重細(xì)節(jié),但并不處處皆是面面俱到。各個(gè)環(huán)節(jié)處理既有詳,又有略,環(huán)節(jié)之間還能夠水到渠成,環(huán)環(huán)相扣,體現(xiàn)出知識之間的生成。每個(gè)環(huán)節(jié)不會顯得突兀,給人一種渾然一起的感覺;每個(gè)環(huán)節(jié)之間又有相應(yīng)的重點(diǎn)內(nèi)容,顯得比較緊湊,缺一不可。
本節(jié)課有以下不足之處:
一、課件用綠色代表偶數(shù),偶數(shù)變綠色時(shí),顏色太淡,后排看不清楚。
二、時(shí)間分配還有點(diǎn)欠妥,開始進(jìn)入課題時(shí)間稍微長點(diǎn),消耗學(xué)習(xí)時(shí)間。
三、教師語言還應(yīng)該進(jìn)一步簡潔。
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時(shí)難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。
相信《三的倍數(shù)的特征教學(xué)反思800字》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計(jì)劃的必備網(wǎng)站,請您收藏yjs21.com。同時(shí),編輯還為您精選準(zhǔn)備了倍數(shù)特征教學(xué)反思專題,希望您能喜歡!
相關(guān)推薦
一名合格的人民教師應(yīng)該合理的把握教學(xué)進(jìn)度,每一位教師為了上好課,需要寫教案課件。教案是為完成課程標(biāo)準(zhǔn)所規(guī)定的教學(xué)任務(wù)而準(zhǔn)備的教學(xué)工作計(jì)劃。以下是由幼兒教師教育網(wǎng)編輯為你整理的《5倍數(shù)的特征的教學(xué)反思》,歡迎大家參考閱讀!...
把學(xué)生看成自己的孩子,付出的才是真愛,老師們都很會寫教案。教師能更加提高教師的自信心,你知道一份正規(guī)的教學(xué)教案怎么寫嗎?以下“2和5的倍數(shù)的特征教學(xué)反思”由編輯為大家收集整理,本文供你參考,希望能幫到你!...
一名合格的人民教師應(yīng)該合理的把握教學(xué)進(jìn)度,教案要根據(jù)教學(xué)原則和教材特點(diǎn),結(jié)合學(xué)生具體情況進(jìn)行編寫。教案幫助老師提升教學(xué)能力。以下為欄目小編為你收集整理的北師大版3的倍數(shù)的特征教學(xué)反思,更多信息請繼續(xù)關(guān)注我們的網(wǎng)站!...
欄目小編特地為大家精心收集和整理了“3的倍數(shù)的特征教學(xué)反思”。時(shí)時(shí)保持敬業(yè)精神,處處關(guān)心學(xué)生學(xué)習(xí)生活,教學(xué)過程是一個(gè)完整的系統(tǒng),教案也是一樣。教師在教學(xué)的過程中要做到胸有成竹,就需要一份教案。為防遺忘,建議你收藏本頁!...
最新更新