反比例數(shù)學(xué)教案。
老師可以在很多方面拓展學(xué)生的興趣。如今教師對(duì)準(zhǔn)備教案已經(jīng)不再陌生。教案是老師授課最實(shí)用的工具,寫好教案要求教師具備哪些方面的能力呢?我們特地花時(shí)間為你收集并編輯了反比例數(shù)學(xué)教案,希望對(duì)大家有所幫助。
學(xué)習(xí)目標(biāo)
結(jié)合豐富的實(shí)例,認(rèn)識(shí)反比例。能根據(jù)反比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是成反比例。利用反比例解決一些簡單的生活問題,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
學(xué)習(xí)重點(diǎn)
認(rèn)識(shí)反比例,能根據(jù)反比例的意義判斷兩個(gè)相關(guān)聯(lián)的量是不是成反比例。
過程與方法
教師活動(dòng)
一、復(fù)習(xí)
1、什么是正比例的量?
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)工作效率一定,工作時(shí)間和工作總量。
(2)每頭奶牛的產(chǎn)奶量一定,奶牛的頭數(shù)和產(chǎn)奶總量。
(3)正方形的邊長和它的面積。
二、導(dǎo)入新課
利用反義詞來導(dǎo)入今天研究的課題。今天研究兩種量成反比例關(guān)系的變化規(guī)律。
三、進(jìn)行新課
情境(一)
認(rèn)識(shí)加法表中和是12的直線及乘法表中積是12的曲線。
情境(二)
讓學(xué)生把汽車行駛的速度和時(shí)間的表填完整,當(dāng)速度發(fā)生變化時(shí),時(shí)間怎樣變化?每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?你有什么發(fā)現(xiàn)?獨(dú)立觀察,思考
同桌交流,用自己的語言表達(dá)寫出關(guān)系式:速度×?xí)r間=路程(一定)觀察思考并用自己的語言描述變化關(guān)系乘積(路程)一定
情境(三)
把杯數(shù)和每杯果汁量的表填完整,當(dāng)杯數(shù)發(fā)生變化時(shí),每杯果汁量怎樣變化?每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?化關(guān)系
寫出關(guān)系式:每杯果汁量×杯數(shù)=果汗總量(一定)
5、以上兩個(gè)情境中有什么共同點(diǎn)?
反比例意義
引導(dǎo)小結(jié):
活動(dòng)四:想一想
P26頁第1、2、3題
關(guān)系式:X×Y=K(一定)
課后反思:
學(xué)生活動(dòng)
學(xué)生自由回答,相互補(bǔ)充。
學(xué)生觀察,弄清題意。
引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律:加法表中和是12,一個(gè)加數(shù)隨另一個(gè)加數(shù)的變化而變化;乘法表中積是12,一個(gè)乘數(shù)隨另一個(gè)乘數(shù)的變化而變化。
獨(dú)立觀察,思考同桌交流,用自己的語言表達(dá)寫出關(guān)系式:速度×?xí)r間=路程(一定)觀察思考并用自己的語言描述變化關(guān)系乘積(路程)一定。
你有什么發(fā)現(xiàn)?用自己的語言描述變
都有兩種相關(guān)聯(lián)通的量,其中一種量變化,另一種量也隨著變化,并且這
兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的乘積是一定的。這兩種量之間是反比例關(guān)系。
板書設(shè)計(jì)
教學(xué)反思
1、教學(xué)內(nèi)容:反比例的意義
2、信息窗的介紹:
該情境圖呈現(xiàn)了啤酒生產(chǎn)車間的一角,以表格的形式介紹了每天生產(chǎn)啤酒的噸數(shù)與需要生產(chǎn)的天數(shù)情況,引導(dǎo)學(xué)生提出問題,引入對(duì)成反比例的量和反比例關(guān)系的學(xué)習(xí)。
只一個(gè)紅點(diǎn):反比例的意義
3、信息窗的教學(xué)建議
第一、提出挑戰(zhàn)性的問題,讓學(xué)生自主探究反比例的意義。
本節(jié)課是在學(xué)生學(xué)習(xí)了正比例意義的基礎(chǔ)上教學(xué)的,但在學(xué)習(xí)了正比例的知識(shí)及研究方法的基礎(chǔ)上如果仍舊采用相同的教學(xué)程序來學(xué)習(xí)反比例,勢(shì)必造成學(xué)生照搬模式,套用結(jié)論,思維水平得不到進(jìn)一步發(fā)展。造成學(xué)習(xí)的過程中孩子注重找出答案而不注重發(fā)展對(duì)知識(shí)的理解。在認(rèn)知、理解不夠充分的前提下生硬的套用正比例意義的闡述模式來定義反比例的意義,學(xué)生缺乏對(duì)知識(shí)點(diǎn)本質(zhì)的深入理解。鑒于此,我認(rèn)為可以這樣設(shè)計(jì)教學(xué):
師:這節(jié)課我們要來研究成反比例的量,你認(rèn)為成反比例的量會(huì)有怎樣的變化特點(diǎn)?(提出有挑戰(zhàn)性的問題。)
學(xué)生可能會(huì)有一下觀點(diǎn):
生1成反比例的量可能就是兩種量的變化是相反的。
生2:正比例中一個(gè)量擴(kuò)大若干倍,另一個(gè)量也擴(kuò)大相同的倍數(shù),他們的變化是一致的,我想,反比例中可能就是一個(gè)量擴(kuò)大若干倍,另一個(gè)量反而縮小相同的倍數(shù),他們的變化相反。
生3:成正比例的量中相對(duì)應(yīng)的數(shù)的商一定,成反比例的量中可能是相對(duì)應(yīng)的數(shù)的積一定。
生4:也許是和一定,一個(gè)量在增加,另一個(gè)量在減少,它們的變化也是相反的。
因?yàn)樵谡壤幕A(chǔ)上學(xué)習(xí)反比例,學(xué)生的頭腦中不會(huì)一片空白,用猜一猜的形式,給予學(xué)生想象(猜測(cè))的空間,調(diào)動(dòng)學(xué)生積極思維,再現(xiàn)原有知識(shí)基礎(chǔ),促進(jìn)新舊知識(shí)遷移互動(dòng)。然后教師出示信息窗中的表格
每天生產(chǎn)的噸數(shù)
100
200
300
400
500
......
需要生產(chǎn)的天數(shù)
60
30
20
15
12
......
讓學(xué)生小組合作探討交流,最后教師總結(jié)反比例的意義。
第二、結(jié)合生活實(shí)例,加深概念的理解。
像正比例一樣,學(xué)習(xí)了反比例概念之后,也要讓學(xué)生先找出生活中還有哪兩種量也是成反比例關(guān)系的,并用具體數(shù)據(jù)說明加深對(duì)反比例意義的理解。
注意的問題:
(為什么要學(xué)習(xí)正反比例呢?)(比例的知識(shí)在工農(nóng)業(yè)生產(chǎn)和日常生活中有著廣泛的應(yīng)用。例如,繪制地圖需要應(yīng)用比例尺的知識(shí),在生產(chǎn)和生活中還經(jīng)常用到兩種量之間成正比例關(guān)系或成反比例關(guān)系。比例的知識(shí)還是進(jìn)一步學(xué)習(xí)中學(xué)數(shù)學(xué)、物理、化學(xué)等知識(shí)的基礎(chǔ)。各行各業(yè)都要用到的知識(shí),數(shù)學(xué)就不說了,其他學(xué)科如地理、物理等。幾乎是與比例密不可分的。象氣溫與氣壓成反比關(guān)系、氣溫與海拔高度成反比關(guān)系、氣溫與緯度成反比關(guān)系、物體放出的波長與其本身的溫度成反比關(guān)系、風(fēng)速與水平氣壓梯度力成正比關(guān)系等等)
4、自主練習(xí)分析
第3題是一組判斷題。練習(xí)時(shí),可先讓學(xué)生思考:怎樣判斷兩個(gè)量是否成反比例?在明確思路后,讓學(xué)生通過獨(dú)立思考,逐一解決。交流時(shí),注意讓學(xué)生運(yùn)用反比例的意義進(jìn)行說明。關(guān)于已植的棵數(shù)和未植的棵數(shù),雖然未植的棵數(shù)隨著已植的棵數(shù)的變化而變化,并且這兩個(gè)量的和也是一定的,但是它們的乘積不一定,所以已植的棵數(shù)和未植的棵數(shù)不成反比例。通過這一題的練習(xí),要讓學(xué)生明確怎樣確定兩個(gè)量成正比例關(guān)系還是成反比例關(guān)系。
你知道嗎?欄目介紹了反比例圖像,目的是讓學(xué)生知道反比例關(guān)系也能用圖像表示,教學(xué)時(shí)不必要求學(xué)生畫圖象。
信息窗4--裝運(yùn)啤酒
1、教學(xué)內(nèi)容:用正反比例解決實(shí)際問題。
2、信息窗的介紹:該圖用一個(gè)特寫鏡頭呈現(xiàn)了汽車運(yùn)輸啤酒的情境。通過介紹啤酒裝箱中的有關(guān)數(shù)據(jù),引導(dǎo)學(xué)生提出問題,學(xué)習(xí)用比例知識(shí)解決實(shí)際問題,這個(gè)窗有兩個(gè)紅點(diǎn)。
第一個(gè)紅點(diǎn):用正比例知識(shí)解決實(shí)際問題。
第二個(gè)紅點(diǎn):用反比例知識(shí)解決實(shí)際問題。
3、信息窗教學(xué)建議:
第一、既鼓勵(lì)學(xué)生解決問題策略的多樣化,又重視用比例解題的教學(xué)。
教學(xué)時(shí),可以從裝運(yùn)啤酒的話題引入,介紹有關(guān)信息,然后呈現(xiàn)情境圖,引導(dǎo)學(xué)生觀察,理解圖意,提出問題
成正比例的量,在生活實(shí)際中應(yīng)用很廣,學(xué)生在以前的學(xué)習(xí)中,已接觸過這種情況的問題,如歸一應(yīng)用題,只不過那時(shí)是就題論題,沒有上升到一般規(guī)律。出示例題后,教師要引導(dǎo)學(xué)生獨(dú)立思考,用自己的方法解決問題,再組織學(xué)生進(jìn)行交流。交流時(shí),學(xué)生可能利用以前學(xué)過的知識(shí)解答。這時(shí),教師要給予肯定,然后再引導(dǎo)學(xué)生用比例的知識(shí)解答,可啟發(fā)學(xué)生思考:哪一個(gè)量是一定的?啤酒的總瓶數(shù)和箱數(shù)成什么比例關(guān)系?為什么?然后根據(jù)正比例的意義列出等式(方程),并讓學(xué)生獨(dú)立解答,然后進(jìn)行交流。
教學(xué)第二個(gè)紅點(diǎn)標(biāo)示的問題時(shí),可以仿照第一個(gè)紅點(diǎn)的教學(xué)思路進(jìn)行。
第二、及時(shí)引導(dǎo)學(xué)生對(duì)用正反比例解題進(jìn)行比較。
兩個(gè)紅點(diǎn)問題解決之后,要引導(dǎo)學(xué)生加強(qiáng)對(duì)比,找出在解決問題方法上的相同和不同之處,讓學(xué)生掌握用正、反比例知識(shí)解決問題的思路和方法。
4、自主練習(xí)分析
第5題是靈活運(yùn)用反比例的知識(shí)解決實(shí)際問題的題目。練習(xí)時(shí),要注意組織學(xué)生認(rèn)真審題,使學(xué)生明確:地面的面積一定,每塊方磚的面積與塊數(shù)成反比例,因此,要先根據(jù)邊長計(jì)算出方磚的面積,再根據(jù)反比例知識(shí)列式解決。這一題是學(xué)生最容易出問題的,有的學(xué)生會(huì)直接用邊長乘以塊數(shù)。要讓學(xué)生分析一下數(shù)量關(guān)系。然后再解決。
教學(xué)要求:
1.使學(xué)生加深認(rèn)識(shí)正比例關(guān)系和反比例關(guān)系的意義,進(jìn)一步掌握判斷兩種相關(guān)聯(lián)的量是否成正比例或反比例的方法,提高分析、判斷的能力。
2.使學(xué)生進(jìn)一步掌握正、反比例應(yīng)用題的解題思路和解題方法,提高解答正、反比例應(yīng)用題的能力。
教學(xué)重點(diǎn):加深認(rèn)識(shí)正比例關(guān)系和反比例關(guān)系的意義。
教學(xué)難點(diǎn):提高解答正、反比例應(yīng)用題的能力。
教學(xué)過程:
一、揭示課題
在比例這一單元里,除了認(rèn)識(shí)了比例的意義和性質(zhì)外,還學(xué)習(xí)了成正、反比例量的有關(guān)知識(shí)。這節(jié)課,我們復(fù)習(xí)正、反比例。(板書課題)通過復(fù)習(xí),一要加深對(duì)成正比例關(guān)系和成反比例關(guān)系量的認(rèn)識(shí),提高兩種相關(guān)聯(lián)量成正比例還是反比例關(guān)系的判斷能力;二要進(jìn)一步認(rèn)識(shí)正、反比例的應(yīng)用題,加深理解正、反比例應(yīng)用題的解題思路和方法,提高用比例知識(shí)解答應(yīng)用題的能力。
二、復(fù)習(xí)正、反比例的意義
1.做復(fù)習(xí)第4題。
讓學(xué)生看第4題,思考各成什么比例。指名學(xué)生口答,說明理由。
2.整理正、反比例的意義。
提問:剛才是根據(jù)正、反比例的意義判斷的?,F(xiàn)在,誰來說一說正、反比例的意義各是什么
根據(jù)正比例和反比例的意義,正比例和反比例有什么相同和不同的地方?(板書正比例和反比例的相同點(diǎn)和不同點(diǎn))判斷正、反比例的關(guān)鍵是什么
3.做復(fù)習(xí)第5題。
小黑板出示,指名學(xué)生口答,并說明理由。說明:根據(jù)實(shí)際問題里相關(guān)聯(lián)量所成的正比例或反比例關(guān)系,可以用比例知識(shí)解答相應(yīng)的應(yīng)用題。
三、復(fù)習(xí)正、反比例應(yīng)用題
1.整理解題思路。
(1)做復(fù)習(xí)第6題。
讓學(xué)生讀題,思考各成什么比例的應(yīng)用題。指名學(xué)生說明各是什么應(yīng)用題,為什么。指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說明根據(jù)什么列式的。
(2)提問:解答正、反比例應(yīng)用題要怎樣想在解題方法上有什么不同的地方
2.綜合練習(xí)。
(1)做復(fù)習(xí)第8題。
讓學(xué)生讀題。提問:藥粉和水的比是1:500你是怎樣想的(引導(dǎo)學(xué)生看出藥粉和水的份數(shù)以及1:500表示比值一定等)這兩道題成什么比例,為什么讓學(xué)生做在練習(xí)本上。指名學(xué)生口答等式,老師板書。再讓學(xué)生說說怎樣想的,根據(jù)什么列式的。追問:這道題還可以怎樣做(讓學(xué)生思考按比的意義,應(yīng)用分?jǐn)?shù)知識(shí)或歸一方法,口答算式)
(2)做復(fù)習(xí)第l0題。
要求學(xué)生思考有哪些方法解答第一個(gè)問題.指名一人板演,其余學(xué)生做在練習(xí)本上。要求列出不同解法的式子。集體訂正,說說各是怎樣想的。
四、課堂小結(jié)
這節(jié)課復(fù)習(xí)了哪些內(nèi)容誰來說一說這節(jié)課你掌握了哪些知識(shí)或方法
五、課堂作業(yè)
復(fù)習(xí)第7、9題,第10題第二個(gè)問題。
教學(xué)目標(biāo):
在鞏固正反比例的意義和正方比例的判斷方法上,通過比較觀察,理解并掌握正、反比例的意義和判斷方法的差異,明確在同一組數(shù)量關(guān)系中,什么量一定時(shí),另外兩種量成正比例關(guān)系;什么量一定時(shí),另外兩種量成反比例關(guān)系,并能正確地判斷。
教學(xué)重點(diǎn)、難點(diǎn):
區(qū)分正反比例的差異
教學(xué)過程:
一、復(fù)習(xí)
1、前面一段時(shí)間我們學(xué)習(xí)哪兩種比例關(guān)系?說說你的理解!
板書:正比例、反比例(學(xué)生回顧正反比例)
2、出示小黑板:
表一、
總價(jià)(元)
8
16
40
80
160
數(shù)量(件)
1
2
5
10
20
()和()是兩種相關(guān)聯(lián)的量,()隨著()而變化,()一定。所以()和()成()關(guān)系。
表二、
單價(jià)(元)
80
40
20
10
5
數(shù)量(件)
1
2
4
8
16
讓學(xué)生先完成表一的問題,在讓學(xué)生如同表一的問題完成表二,書寫在作業(yè)作上,請(qǐng)兩名學(xué)生說一說。
3、想一想:單價(jià)、數(shù)量、總價(jià)這三種量、每兩種之間存在怎么樣的比例關(guān)系?它們的條件是什么?
二、總結(jié)問題、比較正反比例
1、
單價(jià)一定,數(shù)量和總價(jià)成正比例關(guān)系。
數(shù)量一定,單價(jià)和總價(jià)成正比例關(guān)系。
總價(jià)一定、單價(jià)和數(shù)量呈反比例關(guān)系。
小練筆:請(qǐng)學(xué)生舉幾個(gè)數(shù)量關(guān)系說一說,同桌交流,匯報(bào)
2、正反比例比較
觀察表一和表二以及正反比例的知識(shí),比較正反比例
正比例
反比例
相同點(diǎn)
兩種相關(guān)聯(lián)的量
不同點(diǎn)
變化方向一致
兩種量相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定
變化方向相反
兩種量相對(duì)應(yīng)的兩個(gè)數(shù)的乘積一定
三、鞏固練習(xí)
練一練1、2、3
4、A、B、C三種量的關(guān)系是:
如果A一定,那么B和C成()比例;
如果B一定,那么A和C成()比例;
如果C一定,那么A和B成()比例。
在此基礎(chǔ)上拓展:
1、,那么和成()關(guān)系;
2、,那么和成()關(guān)系;
3、,那么和成()關(guān)系;
判斷:
(1),圓周率一定,圓的周長和相應(yīng)的直徑成正比例;
(2),圓的直徑一定,圓周率和相應(yīng)的周長成正比例;
(3),圓的周長一定,圓周率和相應(yīng)的直徑成反比例;
練一練5、判斷成不成比例?成什么比例?
四、小結(jié)
正反比例的區(qū)別與判斷
課后反思:
本堂課是在學(xué)生學(xué)習(xí)了正比例和反比例的基礎(chǔ)上進(jìn)行的一堂正反比例的比較的綜合課,整堂課主要是讓學(xué)生通過一定的練習(xí)比較觀察使得學(xué)生自主的歸納出正反比例的異同,使得學(xué)生能夠更好的明確正反比例的意義和判斷。因此整堂課學(xué)生的參與的積極性比較高,基本上的學(xué)生都能夠參與到課堂的教學(xué)中來。
在整個(gè)備課過程中,根據(jù)教學(xué)內(nèi)容的要求,載客后的練習(xí)中補(bǔ)充了帶有未知數(shù)的三道練習(xí)讓學(xué)生判斷成不成比例,成什么比例,提高學(xué)生對(duì)數(shù)學(xué)的積極性和杰卻問題的能力。與此同時(shí)還安排了一個(gè)判斷題,由于前面都遇到有一個(gè)數(shù)量關(guān)系可以得出一種量一定,另外兩種量的比例關(guān)系,可是這個(gè)問題就存在有這樣的問題,因?yàn)閳A周率是一定的,通過這個(gè)題的練習(xí)使得學(xué)生更好的理解正反比例的條件,兩種相關(guān)聯(lián)的量,一種量變化另一種量也隨著變化。
再602班上課的時(shí)候,在出示小黑板的時(shí)候,沒有先讓學(xué)生回顧正反比例的知識(shí),學(xué)生的課堂注意力沒有及時(shí)地吸引過來,于是在第二堂課的時(shí)候,求安排了這樣一個(gè)環(huán)節(jié),讓學(xué)生回顧知識(shí),并吸引學(xué)生注意。還有就是表意于表二的利用,在第二堂課上比第一堂提高了,消除了學(xué)生再次整理信息所消耗的時(shí)間,提高了課堂效率。
教學(xué)內(nèi)容:教科書第22—24頁反比例的意義,練習(xí)六的第4—6題。
教學(xué)目的:
1.使學(xué)生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學(xué)生進(jìn)一步認(rèn)識(shí)事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。
3.初步滲透函數(shù)思想。
教具準(zhǔn)備:投影儀、投影片、小黑板。
教學(xué)過程():
一、復(fù)習(xí)
1.讓學(xué)生說說什么是成正比例的量:
2.用投影片出示下面的題:
(1)下面各題中哪兩種量成正比例?為什么?
①筆記本單價(jià)一定,數(shù)量和總價(jià):
⑨汽車行駛速度一定.行駛的路程和時(shí)間。
②工作效率一定.’工作時(shí)間和工作總量。
①一袋大米的重量一定.吃了的和剩下的。
(2)說出每小時(shí)加工零件數(shù)、加工時(shí)間和加工零件總數(shù)三者間的數(shù)量關(guān)系。在什么條件下,其中兩種量成正比例?
二、導(dǎo)入新課
教師:如果加工零件總數(shù)一定。每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么樣的變化.關(guān)系怎樣?就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
三、新課
1.教學(xué)例4。
出示例4;豐機(jī)械廠加工一批機(jī)器零件。每小時(shí)加工的數(shù)量和所需的加工時(shí)間如下表。
讓學(xué)生觀察這個(gè)表,然后每四人一組討論下面的問題:
(1)表中有哪兩種量?
(2)所需的加工時(shí)間怎樣隨著每小時(shí)加工的個(gè)數(shù)變化?
(3)每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?
學(xué)生分組討論后集中發(fā)言。然后每個(gè)小組選代表回答上面的問題。隨著學(xué)生的回答,教師板書如下:每小時(shí)加工數(shù)加工時(shí)間
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“這個(gè)積600。實(shí)際上是什么?”在“加工時(shí)間”后面板書:零件總數(shù)
“積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)
“每小時(shí)加工數(shù)、加工時(shí)間和零件總數(shù)這三種量有什么關(guān)系呢?”
學(xué)生回答后,教師小結(jié):通過剛才的觀察分析.我門可以看出。表中每小時(shí)加工零件數(shù)和所需的加工時(shí)間是兩種相關(guān)聯(lián)的量。所需的加工時(shí)間是隨著每小時(shí)加工數(shù)量的變化而變化的,每小時(shí)加工的數(shù)量擴(kuò)大。所需的加工時(shí)間反而縮小3每小時(shí)加工的數(shù)量縮小,所需的加工的時(shí)間反而擴(kuò)大。它們擴(kuò)大、縮小的規(guī)律是:每小時(shí)加工的零件的數(shù)量和所需的加工時(shí)間的積都等于600,即總是一定的:我們把這種關(guān)系寫成式子就是:每小時(shí)加工數(shù)×加工的時(shí)間=零件總數(shù)(一定)。
2.教學(xué)例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習(xí)本,每本的頁數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請(qǐng)你先填寫下表。
(1)理解題意,填寫裝訂本數(shù)。
“誰能說說表中第一欄數(shù)據(jù)的意思?”(用600頁紙裝訂練習(xí)本,如果每本練習(xí)本15頁,可以裝訂40本。)
“這40本是怎么計(jì)算出來的?”(用600÷15)
“如果每本練習(xí)本是20頁,你能計(jì)算出可以裝訂多少這樣的練習(xí)本嗎?如果每本是25頁呢?……請(qǐng)你把計(jì)算出來的本數(shù)填在教科書第23頁的表中?!苯處煱褜W(xué)生報(bào)出的數(shù)據(jù)填在黑板上的表中。
(2)觀察分析表中兩種量的變化規(guī)律。
讓學(xué)生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數(shù)裝訂的本數(shù))
“裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化的?”隨著學(xué)生的回答,板書如下:每本的頁數(shù) 裝訂的本數(shù)
15 40
20 30
25 24
一’然后讓學(xué)生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。
1,單價(jià)一定.?dāng)?shù)量和總價(jià)。
2,路程一定,速度和時(shí)間。。
3,正方形的邊長和它的面積。
1.時(shí)間一定,工效和工作總量。
二、導(dǎo)入新課
教師:我們?cè)谇皟晒?jié)課分別學(xué)習(xí)了成正比例的量和成反比例的量。初步學(xué)會(huì)判斷
兩種量是不是成正比例或反比例的關(guān)系,發(fā)現(xiàn)有些同學(xué)判斷時(shí)還不夠準(zhǔn)確。這節(jié)課我
們要通過比較弄清成正比例的量和成反比例的量有什么相同點(diǎn)和不同點(diǎn)。
板書課題:正比例和反比例的比較
三、新課
1.教學(xué)例7。
出示例7的兩個(gè)表:
表1 表2
讓學(xué)生觀察上面的兩個(gè)表,然后根據(jù)兩個(gè)表所提的問題,分別在教科書上填空。訂正時(shí)。指名說出自己是怎樣填的,教師板書:
在表l中: 在表2中:
相關(guān)聯(lián)的量是路程和時(shí)間. 路程隨著相關(guān)聯(lián)的量是速度 路程隨 時(shí)間變化,速度是 和時(shí)間,速度隨著時(shí)間變化
一定。因此,路程和時(shí)間 ,路程是一定的。因此,速
成正比例關(guān)系。 度和時(shí)間成反比例關(guān)系
然后提問:
(1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據(jù)什么判斷路程和時(shí)間成正比例/
(2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據(jù)什么判斷速度和時(shí)間成反比例?
教師:路程、速度和時(shí)間這三個(gè)量中每兩個(gè)量之間有什么樣的比例關(guān)系?
板書:速度×?xí)r間=路程
=速度 =速度
教師:當(dāng)速度一·定時(shí),路程和時(shí)間成什么比例關(guān)系?
教師:當(dāng)路程一定時(shí),速度和時(shí)間成什么比例關(guān)系?
教師:當(dāng)時(shí)間一定時(shí)。路程和速度成什么比例關(guān)系?
2.比較正比例和反比例關(guān)系。
教師:結(jié)合上面兩個(gè)例子,比較——下正比例關(guān)系和反比例關(guān)系,你能寫出它們的相同點(diǎn)和不同點(diǎn)嗎?試試看。組織討論,教師歸納并板書:
四、鞏固練習(xí)
1.做教科書第28頁“做一做”中的題目。
讓學(xué)生自己填,并說一說為什么。
2.做練習(xí)七的第1—2題。
教師巡視,個(gè)別輔導(dǎo),最后訂正。
五、小結(jié)
教師:請(qǐng)同學(xué)們說說正比例和反比例關(guān)系有什么相同點(diǎn)和不同點(diǎn)?
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
①學(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
②學(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
③學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:
用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔?,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動(dòng)3
問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計(jì)
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長越省力?
設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減?。?/p>
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。
從容說課
我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說明確實(shí)把知識(shí)學(xué)好了,會(huì)用了
用函數(shù)觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,教學(xué)時(shí)應(yīng)注意分析的過程,即將實(shí)際問題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問題.同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想
此外,解決實(shí)際問題時(shí).還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程
2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).提高運(yùn)用代數(shù)方法解決問題的能力
(二)能力訓(xùn)練要求
通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力
(三)情感與價(jià)值觀要求
經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題.發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用
教學(xué)重點(diǎn)
用反比例函數(shù)的知識(shí)解決實(shí)際問題
教學(xué)難點(diǎn)
如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題
教學(xué)方法
教師引導(dǎo)學(xué)生探索法
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?
[生]是為了應(yīng)用
[師]很好;學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題.究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)
Ⅱ. 新課講解
某校科技小組進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 N,那么
(1)用含S的代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么?
(2)當(dāng)木板畫積為 0.2 m2時(shí).壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要多大?
(4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象
(5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流
[師]分析:首先要根據(jù)題意分析實(shí)際問題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問題
請(qǐng)大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函數(shù),因?yàn)榻o定一個(gè)S的值.對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是S的反比例函數(shù)
(2)當(dāng)S= 0.2 m2時(shí), p==3000(Pa)
當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000Pa.
(3)當(dāng)p=6000 Pa時(shí),
S==0.1(m2)
如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要 0.1 m2
(4)圖象如下:
(5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍
[師]這位同學(xué)回答的很好,下面我要提一個(gè)問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢?
[生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問題,S不可能取負(fù)數(shù),所以第三象限的曲線不存在
[師]很好,那么在(1)中是不是應(yīng)該有條件限制呢?
[生]是,應(yīng)為p= (S>0).
做一做
1、蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如下圖;
(1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎?
(2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過 10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?
[師]從圖形上來看,I和R之間可能是反比例函數(shù)關(guān)系.電壓U就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(U),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問題就解決了,填表實(shí)際上是已知自變量求函數(shù)值.
[生]解:(1)由題意設(shè)函數(shù)表達(dá)式為I=
∵A(9,4)在圖象上,
∴U=IR=36
∴表達(dá)式為I=
蓄電池的電壓是36伏
(2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6
電源不超過 10 A,即I最大為 10 A,代入關(guān)系式中得R=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在R≥3.6這個(gè)范圍內(nèi)
2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(,2)
(1)分別寫出這兩個(gè)函數(shù)的'表達(dá)式:
(2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流
[師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把A點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)B的
坐標(biāo)即求y=k1x與y=的交點(diǎn)
[生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上
∴k1=2,2=
∴k1=2,k2=6
∴表達(dá)式分別為y=2x,y=
∴x2=3
∴x=±
當(dāng)x= ?時(shí),y= ?2
∴B(?,?2)
Ⅲ.課堂練習(xí)
1.某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空Yjs21.com
(1)蓄水池的容積是多少?
(2)如果增加排水管,使每時(shí)的排水量達(dá)到Q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化?
(3)寫出t與Q之間的關(guān)系式;
(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少?
(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長時(shí)間可將滿池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容積是 48 m3
(2)因?yàn)樵黾优潘?,使每時(shí)的排水量達(dá)到Q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少.
(3)t與Q之間的關(guān)系式為t=
(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3)
(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空.
Ⅳ、課時(shí)小結(jié)
節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題.
Ⅴ課后作業(yè)
習(xí)題5.4.
板書設(shè)計(jì)
§ 5.3反比例函數(shù)的應(yīng)用
一、1.例題講解
2.做一做
二、課堂練習(xí)
三、課時(shí)小節(jié)
四、課后作業(yè)(習(xí)題5.4)
教學(xué)目標(biāo)
1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行運(yùn)用變化觀點(diǎn)的啟蒙教育.
教學(xué)重難點(diǎn)
理解正反比例的意義,掌握正反比例的變化的規(guī)律.
教學(xué)過程
一、導(dǎo)入新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
(二)教師提問
1.你為什么馬上能想到還剩多少呢?
2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?
教師板書:兩種相關(guān)聯(lián)的量
(三)教師談話
在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和
數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學(xué)
(一)成正比例的量
例1.一列火車行駛的時(shí)間和所行的路程如下表:
時(shí)間(時(shí)):路程(千米)
1 :90
2 :180
3 :270
4 :360
5 :450
6 :540
7 :630
8 :720
1.寫出路程和時(shí)間的比并計(jì)算比值.
(1) 2表示什么?180呢?比值呢?
(2) 這個(gè)比值表示什么意義?
(3) 360比5可以嗎?為什么?
2.思考
(1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?
(2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時(shí)間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?
(5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.
3.小結(jié):有什么規(guī)律?
第一課時(shí)
教學(xué)內(nèi)容:P39~41 成正比例的量
教學(xué)要求:1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學(xué)生概括能力和分析判斷能力。
3、培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。
教學(xué)重點(diǎn):成正比例的量的特征及其判斷方法。
教學(xué)難點(diǎn):理解兩個(gè)變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.
教學(xué)過程:
一、四顧舊知,復(fù)習(xí)鋪墊
1、已知路程和時(shí)間,求速度
2、已知總價(jià)和數(shù)量,求單價(jià)
3、已知工作總量和工作時(shí)間,求工作效率
二、引導(dǎo)探索,學(xué)習(xí)新知
1、教學(xué)例1:
出示:一列火車1小時(shí)行駛90千米,2小時(shí)行駛180千米,
3小時(shí)行駛270千米,4小時(shí)行駛360千米,
5小時(shí)行駛450千米,6小時(shí)行駛540千米,
7小時(shí)行駛630千米,8小時(shí)行駛720千米……
(1)出示下表,填表
一列火車行駛的時(shí)間和路程
時(shí)間
路程
填表,思考:在填表中你發(fā)現(xiàn)了什么?
時(shí)間變化,路程也隨著變化,我們就說時(shí)間和路程是兩個(gè)相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)
根據(jù)計(jì)算,你發(fā)現(xiàn)了什么?
相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值一樣或固定不變,在數(shù)學(xué)上叫做一定。
用式子表示他們的關(guān)系是:路程/時(shí)間=速度(一定)(板書)
(2)教師小結(jié):
同學(xué)們通過填表,交流,知道時(shí)間和路程是.兩種相關(guān)聯(lián)的量,路程隨著時(shí)間的變化而變化.時(shí)間擴(kuò)大,路程隨著擴(kuò)大;時(shí)間縮小,路程也隨著縮小。即:路程/時(shí)間=速度(一定)
2、教學(xué)例2:
(1)花布的米數(shù)和總價(jià)表
數(shù)量 1 2 3 4 5 6 7 ……
總價(jià) 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……
(2)觀察圖表,發(fā)現(xiàn)什么規(guī)律?
用式子表示它們的關(guān)系:總價(jià)/米數(shù)=單價(jià)(一定)
3、抽象概括正比例的意義。
(1)比較例1、例2,思考并討論:這兩個(gè)例題有什么共同點(diǎn)?
(2)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩個(gè)量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
(3)看書P39,進(jìn)一步理解正比例的意義。
(4)如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?
x/y=k(一定)
(5)根據(jù)正比例的意義以及表示正比例的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?
4、看書P40例2。
(1)題中有幾種量?哪兩種量是相關(guān)聯(lián)的量?
(2)體積和高度的比的比值是多少?這個(gè)比值是什么?是不是一定?
(3)它們的數(shù)量關(guān)系式是什么?
(4)從圖中你發(fā)現(xiàn)了什么?
(5)不計(jì)算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是多少?225立方厘米的水有多高?
三、課堂小結(jié):
什么是成正比例的量?它必須具備什么條件?怎樣判斷成正比例的量?
四、課堂練習(xí):
1、P41做一做
2、P43~44練習(xí)七第1~5題。
第二課時(shí)
教學(xué)內(nèi)容:P42 成反比例的量
教學(xué)目的:1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識(shí)事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
教學(xué)重點(diǎn):引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式.
教學(xué)難點(diǎn):利用反比例的意義,正確判斷兩個(gè)量是否成反比例.
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1、下面兩種量是不是成正比例?為什么?
購買練習(xí)本的價(jià)錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.
2、成正比例的量有什么特征?
二、探究新知
1、導(dǎo)入新課:這節(jié)課我們繼續(xù)學(xué)習(xí)常見的數(shù)量關(guān)系中的另一種特征——成反比例的量。
2、教學(xué)P42例3。
(1)引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:
A、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?
B、水的高度是否隨著底面積的變化而變化?怎樣變化的?
C、表中兩個(gè)相對(duì)應(yīng)的數(shù)的比值各是多少?一定嗎?兩個(gè)相對(duì)應(yīng)的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?
D、這個(gè)積表示什么?寫出表示它們之間的數(shù)量關(guān)系式
(2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?
A、學(xué)生討論交流。
B、引導(dǎo)學(xué)生回答:
(3)教師引導(dǎo)學(xué)生明確:因?yàn)樗捏w積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
(4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個(gè)什么樣的式子表示?板書:x×y=k(一定)
三、鞏固練習(xí)
1、想一想:成反比例的量應(yīng)具備什么條件?
2、判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
(1)路程一定,速度和時(shí)間。
(2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價(jià)和購買的數(shù)量。
(6)你能舉一個(gè)反比例的例子嗎?
四、全課小節(jié)
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩個(gè)量是成反比例的兩個(gè)量,也學(xué)會(huì)了怎樣判斷兩種量是不是成反比例。
五、課堂練習(xí)
P45~46練習(xí)七第6~11題。 第三課時(shí)
教學(xué)內(nèi)容:正比例和反比例的比較
教學(xué)目標(biāo):1、進(jìn)一步理解正比例和反比例的意義,弄清它們的聯(lián)系和區(qū)別。掌握它們的變化規(guī)律。
2、使學(xué)生能正確判斷正、反比例。
3、發(fā)展學(xué)生分析、比較、抽象、概括能力,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)難點(diǎn):正反比例的聯(lián)系和區(qū)別 。
教學(xué)重點(diǎn):能判斷正、反比例。
教學(xué)過程:
一、復(fù)習(xí):
判斷:下面每組中的兩個(gè)量成什么關(guān)系?
1、單價(jià)一定,數(shù)量和總價(jià)。
2、路程一定,速度和時(shí)間。
3、正方形的邊長和它的面積。
4、時(shí)間一定,工效和工作總量。
二、新知:
1、出示課題:
2、教學(xué)補(bǔ)充例題
出示表1
路程(千米) 5 10 25 50 100
時(shí)間(時(shí)) 1 2 5 10 20
表2
速度(千米/時(shí)) 100 50 20 10 5
時(shí)間(時(shí)) 1 2 5 10 20
分組討論、交流:說一說怎樣想的,同時(shí)填空。引導(dǎo)學(xué)生討論回答。
總結(jié)路程、速度、時(shí)間三個(gè)量中每兩個(gè)量之間的比例關(guān)系。
速度×?xí)r間=路程 =速度 =時(shí)間
判斷:
(1)速度一定,路程和時(shí)間成什么比例?
(2)路程一定,速度和時(shí)間成什么比例?
(3)時(shí)間一定,路程和速度成什么比例?
3、比較正比例、反比例的關(guān)系
正反比例的相同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量隨著另一種量變化。
不同點(diǎn):正比例使變化相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮小。相對(duì)應(yīng)的每兩個(gè)數(shù)的比值(商)一定,反比例是變化相反,一種量擴(kuò)大(或縮小),另一種量反而縮小(擴(kuò)大)相對(duì)應(yīng)的每兩個(gè)量的積一定。
三、鞏固練習(xí)
1、做一做
判斷單價(jià)、數(shù)量和總價(jià)中的一種量一定,另外兩種量成什么關(guān)系。為什么?
單價(jià)一定,數(shù)量和總價(jià)—
總價(jià)一定,數(shù)量和單價(jià)—
數(shù)量一定,總價(jià)和單價(jià)—
2.判斷下面一些相關(guān)聯(lián)的量成什么比例?為什么?
(1)除數(shù)一定, 和 成 比例。
被除數(shù)—定, 和 成 比例。
(2)前項(xiàng)一定, 和 成 比例。
(3)后項(xiàng)一定, 和 成 比例。
(4)長方形的長、寬和面積三總量,如果長是一定的,寬和面積成正例關(guān)系。這三種量再什么條件下還能組成比例關(guān)系,是哪種比例關(guān)系。
頻道小編推薦: |
教學(xué)要求:
1.使學(xué)生認(rèn)識(shí)正、反比例應(yīng)用題的特點(diǎn),理解、掌握用比例知識(shí)解答應(yīng)用題的解題思路和解題方法,學(xué)會(huì)正確地解答基本的正、反比例應(yīng)用題。
2.進(jìn)一步培養(yǎng)學(xué)生應(yīng)用知識(shí)進(jìn)行分析、推理的能力,發(fā)展學(xué)生思維。
教學(xué)重點(diǎn):認(rèn)識(shí)正、反比例應(yīng)用題的特點(diǎn)。
教學(xué)難點(diǎn):掌握用比例知識(shí)解答應(yīng)用題的解題思路。
教學(xué)過程:
一、復(fù)習(xí)引新
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時(shí)間。
(2)路程一定,行駛的速度和時(shí)間。
讓學(xué)生先分別說出數(shù)量關(guān)系式,再判斷。
2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。
(1)一臺(tái)機(jī)床5小時(shí)加工40個(gè)零件,照這樣計(jì)算,8小時(shí)加工64個(gè)。
(2)一列火車行駛360千米。每小時(shí)行90千米,要行4小時(shí);每小時(shí)行80千米,要行x小時(shí)。
指名學(xué)生口答,老師板書。
3.引入新課。
從上面可以看出,生產(chǎn)、生活中的一些實(shí)際問題,應(yīng)用比例的知識(shí),也可以根據(jù)題意列一個(gè)等式。所以,我們以前學(xué)過的一些應(yīng)用題,還可以應(yīng)用比例的知識(shí)來解答。這節(jié)課,就學(xué)習(xí)正、反比例應(yīng)用題。(板書課題)
二、教學(xué)新課
1.教學(xué)例1。
(1)出示例1,讓學(xué)生讀題。
提問:以前我們是怎樣解答的(板書算式)先求什么,是按怎樣的數(shù)量關(guān)系式來求的這道題里哪個(gè)數(shù)量是不變的量
(2)說明:這道題還可以用比例知識(shí)解答。
提問:題里照這樣計(jì)算說明什么一定數(shù)量之間有怎樣的關(guān)系式,兩種相關(guān)聯(lián)的量成什么比例關(guān)系題里兩次抽水的總量與時(shí)間對(duì)應(yīng)數(shù)值各是多少這兩次對(duì)應(yīng)數(shù)值的什么相等你能根據(jù)對(duì)應(yīng)數(shù)值的比值相等,列出等式來解答嗎請(qǐng)大家自己試一試(啟發(fā)弄清要設(shè)未知數(shù)x)。學(xué)生練習(xí)解題,然后口答,老師板書。追問:按過去的方法是先求什么再解答的先求單一量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的
(3)小結(jié):
提問:誰來說一說,用正比例知識(shí)解答這道應(yīng)用題要怎樣想怎樣做指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對(duì)應(yīng)的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次抽水相對(duì)應(yīng)數(shù)值比的比值相等,列等式解答。
2.教學(xué)改編題。
出示改變的問題,讓學(xué)生說一說題意。請(qǐng)同學(xué)們按照例1的方法自己在練習(xí)本上解答。同時(shí)指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。
3.教學(xué)例2。
(1)出示例2,學(xué)生讀題。
提問:以前我們是怎樣解答的(板書算式)這樣解答先求什么是按怎樣的數(shù)量關(guān)系式來求的(板書:速度時(shí)間=路程)這道題里哪個(gè)數(shù)量是不變的量?
(2)誰能仿照例l的解題過程,用比例知識(shí)來解答例27請(qǐng)來試一試。指名板演,其余學(xué)生做在練習(xí)本上。學(xué)生練習(xí)后提問是怎樣想的。速度和時(shí)間的對(duì)應(yīng)關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的先求總數(shù)量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的誰來說一說,用反比例關(guān)系解答這道應(yīng)用題是怎樣想,怎樣做的指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對(duì)應(yīng)的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次航行相對(duì)應(yīng)數(shù)值的乘積相等,列等式解答。
4.教學(xué)改編題。
出示改變的條件和問題,讓學(xué)生說一說題意。指名一人板演,其余學(xué)生在練習(xí)本上獨(dú)立解答。集體訂正,讓學(xué)生說一說怎樣想的,根據(jù)什么列等式的。
5.小結(jié)解題思路。
請(qǐng)同學(xué)們看一下黑板上例1、例2的解題過程,想一想,應(yīng)用比例知識(shí)解答應(yīng)用題,是怎樣想怎樣做的同學(xué)們可以相互討論一下,然后告訴大家。指名學(xué)生說解題思路。指出:應(yīng)用比例知識(shí)解答應(yīng)用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對(duì)應(yīng)數(shù)值,(板書:找出對(duì)應(yīng)數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認(rèn)為解題時(shí)關(guān)鍵是什么(正確判斷成什么比例)怎樣來列出等式(正比例比值相等,反比例乘積相等)
三、鞏固練習(xí)
1.做練一練。
指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。
2.做練習(xí)十第1題。
讓學(xué)生用比例知識(shí)列出解題的式子,然后口答,老師板書。提問:這兩題有什么相同和不同的地方按過去算術(shù)解法都要先求什么量用比例知識(shí)解答有什么相同的地方(都成正比例關(guān)系,都列成比值相等的式子來解答)有什么不同的地方(未知數(shù),表示的數(shù)量不同,在等式里位置也不同)說明;在正確判斷成比例關(guān)系后,要按照比值相等來列等式解答。列等式時(shí)還要注意數(shù)量之間的對(duì)應(yīng)關(guān)系。
3.做練習(xí)十第2題。
讓學(xué)生默讀題目。提問:用算術(shù)方法解答都要先求什么數(shù)量這兩題里兩種數(shù)量成什么關(guān)系,為什么要按什么相等來列等式
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容正、反比例應(yīng)用題要怎樣解答?你還認(rèn)識(shí)了些什么
五、布置作業(yè)
課堂作業(yè);完成練習(xí)十第1、2題的解答。
家庭作業(yè):練習(xí)十第3題。
感謝您閱讀“幼兒教師教育網(wǎng)”的《反比例數(shù)學(xué)教案2000字系列10篇》一文,希望能解決您找不到幼兒園教案時(shí)遇到的問題和疑惑,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了反比例數(shù)學(xué)教案專題,希望您能喜歡!
相關(guān)推薦
現(xiàn)在向您介紹幼兒園教案《人教版六年級(jí)數(shù)學(xué)下冊(cè)《正比例和反比例的意義》教學(xué)反思》《人教版六年級(jí)數(shù)學(xué)下冊(cè)《正比例和反比例的意義》教學(xué)反思》這是一篇六年級(jí)下冊(cè)數(shù)學(xué)教案,課堂導(dǎo)入新穎、有趣、有效,結(jié)尾有所創(chuàng)新...
現(xiàn)在向您介紹幼兒園教案《新蘇教版六年級(jí)下冊(cè)數(shù)學(xué)《7.4正比例和反比例》教案教學(xué)設(shè)計(jì)反思》《新蘇教版六年級(jí)下冊(cè)數(shù)學(xué)《7.4正比例和反比例》教案教學(xué)設(shè)計(jì)反思》這是一篇六年級(jí)下冊(cè)數(shù)學(xué)教案,教學(xué)中我體會(huì)到:正...
現(xiàn)在向您介紹幼兒園教案《新蘇教版六年級(jí)數(shù)學(xué)下冊(cè)《7.4正比例和反比例》教學(xué)反思體會(huì)》《新蘇教版六年級(jí)數(shù)學(xué)下冊(cè)《7.4正比例和反比例》教學(xué)反思體會(huì)》這是一篇六年級(jí)下冊(cè)數(shù)學(xué)教案,《正比例和反比例》是數(shù)學(xué)教...
現(xiàn)在向您介紹幼兒園教案《六年級(jí)下冊(cè)《正比例和反比例》公開課教案教材簡析反思》《六年級(jí)下冊(cè)《正比例和反比例》公開課教案教材簡析反思》這是一篇六年級(jí)下冊(cè)數(shù)學(xué)教案,好的公開課教案能夠激發(fā)同學(xué)興趣,培養(yǎng)同學(xué)多...
現(xiàn)在向您介紹幼兒園教案《六年級(jí)下冊(cè)《正比例和反比例》公開課教案教學(xué)分析反思》《六年級(jí)下冊(cè)《正比例和反比例》公開課教案教學(xué)分析反思》這是一篇六年級(jí)下冊(cè)數(shù)學(xué)教案,正反比例關(guān)系是比較重要的一種數(shù)量間的關(guān)系。...
最新更新
熱門欄目