不等式課件。
不為明天做好準(zhǔn)備的人是沒(méi)有未來(lái)的,當(dāng)幼兒園教師的工作遇到難題時(shí),我們經(jīng)常會(huì)用提前準(zhǔn)備好的資料進(jìn)行參考。資料通常是指書(shū)籍、報(bào)刊、圖表、圖片等。有了資料才能更好的在接下來(lái)的工作輕裝上陣!所以,關(guān)于幼師資料你究竟了解多少呢?在這里,你不妨讀讀不等式課件,歡迎閱讀,希望對(duì)你有幫助。
教學(xué)目標(biāo):
了解一元一次不等式的概念,掌握一元一次不等式的解法。
教學(xué)重點(diǎn):
是掌握解一元一次不等式的步驟
教學(xué)難點(diǎn):
是必須切實(shí)注意遇到要在不等式兩邊都乘以(或除以)同一負(fù)數(shù)時(shí),必須改變不等號(hào)的方向。
教學(xué)過(guò)程:
一、問(wèn)題導(dǎo)入
復(fù)習(xí):
1、不等式的基本性質(zhì)有哪些?什么是一元一次方程?并舉出兩個(gè)例子。
2、觀察不等式x+3<5與x<2,說(shuō)明解x<2是x+3<5依據(jù)什么變形得到的?
3、解一元一次方程:6x+5=7-2x,目的是為了與下面所學(xué)的解一元一次不等式進(jìn)行類(lèi)比,找到它們的聯(lián)系與區(qū)別。
二、指導(dǎo)自學(xué),小組合作交流
請(qǐng)同學(xué)們根據(jù)以下提問(wèn)進(jìn)行自學(xué),先個(gè)人思考,后小組合作學(xué)習(xí)。
1、觀察下列不等式,說(shuō)一說(shuō)這些不等式有哪些共同特點(diǎn)?
(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0
觀察上面不等式有哪些共同特點(diǎn),讓學(xué)生通過(guò)交流,再總結(jié)一元一次不等式的概念。老師板書(shū)定義。
2、讓學(xué)生舉出2或3個(gè)一元一次不等式的例子,小組交流。
3、讓學(xué)生通過(guò)比較解一元一次方程:6x+5=7-2x的解法試解一元一次不等式:6x+5<7-2x,并將解集在數(shù)軸上表示出來(lái)。
4、思考:一元一次不等式與一元一次方程的解法有哪些類(lèi)似之處?有什么不同?
5、解下列不等式,并把它們的解集在數(shù)軸上表示出來(lái)。
(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x
(3)(x-1)/3≥(2-x)/2+1
總結(jié):解一元一次不等式的依據(jù)和解一元一次不等式的步驟。
三、互動(dòng)交流,教師點(diǎn)撥
(一)、學(xué)生易出錯(cuò)的問(wèn)題和注意的事項(xiàng):
1、確定一個(gè)不等式是不是一元一次不等式,要抓住三個(gè)要點(diǎn):左右兩邊都是整式,只有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1。
2、對(duì)于(1),讓學(xué)生說(shuō)明不等式3-x<2x+9的每一步變形的依據(jù)是什么,特別注意的是:解不等式的移項(xiàng)和解方程的移項(xiàng)一樣。即移項(xiàng)要變號(hào)(培養(yǎng)學(xué)生運(yùn)用類(lèi)比的數(shù)學(xué)思想)。
3、不等式兩邊同時(shí)除以(-3)時(shí),不等號(hào)的方向改變。
2、重點(diǎn)點(diǎn)撥(2)和(3),先讓學(xué)生到黑板上板演。老師再講評(píng)。
(2)易出錯(cuò)的地方是:去括號(hào)時(shí)漏乘,括號(hào)前是負(fù)號(hào),去掉括號(hào)后括號(hào)里的項(xiàng)沒(méi)變號(hào),還有移項(xiàng)沒(méi)有變號(hào);(3)易出錯(cuò)的地方是:去分母時(shí)漏乘無(wú)分母的項(xiàng)。
3、歸納解一元一次不等式的步驟(與解一元一次方程的步驟類(lèi)比):去分母,去括號(hào),移項(xiàng),合并同類(lèi)項(xiàng),系數(shù)化為1。(在系數(shù)化為1這一步要特別提醒學(xué)生注意當(dāng)系數(shù)為負(fù)數(shù)時(shí),要記住改變不等號(hào)的方向。)
四、鞏固練習(xí)
1、判斷下列不等式是不是一元一次不等式,為什么?
(1)2/x—3
(2)5x+3x–1
(4)x(2x+1)
(5)X+2≥x
2、解下列不等式,并把它們的解集在數(shù)軸上表示出來(lái)
(1)3x–8
(2)2(x–1)≥x+3
(3)x/5≥1+(x–3)/2
3、[思考]當(dāng)x取何值時(shí),代數(shù)式(x–2)/2的值比(3x+1)/3的值大?
小結(jié):
(1)不等式兩邊同時(shí)除以負(fù)數(shù)時(shí),不等號(hào)的方向要改變。
(2)注意去括號(hào)時(shí)不要漏乘,括號(hào)前是負(fù)號(hào),去掉括號(hào)后括號(hào)里的項(xiàng)要變號(hào),還有移項(xiàng)一定要變號(hào)
(3)去分母時(shí)不要漏乘無(wú)分母的項(xiàng)。
一、教學(xué)目標(biāo)
(一)知識(shí)與技能
1.了解從實(shí)際情境中抽象出二元一次不等式(組)模型的過(guò)程
2.掌握簡(jiǎn)單的二元線性規(guī)劃問(wèn)題的解法
3.了解數(shù)學(xué)建模的整個(gè)過(guò)程
(二)過(guò)程與方法
1.通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生用數(shù)學(xué)眼光去觀察生活、并且能提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
2.增強(qiáng)學(xué)生的協(xié)作能力.
(三)情感、態(tài)度與價(jià)值觀
1.通過(guò)學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)模型的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,深刻體會(huì)數(shù)學(xué)是有用的.
2.通過(guò)實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生愛(ài)護(hù)環(huán)境的責(zé)任心.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):從具體生活情境中提煉出簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并且用數(shù)學(xué)方法解決問(wèn)題.
難點(diǎn):從具體生活情境中提煉出約束條件和目標(biāo)函數(shù).
三、教學(xué)設(shè)想
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以二元一次不等式(組)模型的發(fā)現(xiàn)為基本探究?jī)?nèi)容,以周?chē)澜绾蜕顚?shí)際為對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問(wèn)題的機(jī)會(huì),讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)實(shí)際問(wèn)題的深入探討.讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新.設(shè)計(jì)思路如下:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
四、教學(xué)過(guò)程:
引入
(1)如圖,小明與小聰玩蹺蹺板,大家都不用力時(shí),蹺蹺板左低右高.小明的身體質(zhì)量為p(kg),小聰?shù)纳眢w質(zhì)量為q(kg),書(shū)包的質(zhì)量為2kg,怎樣表示p、q之間的關(guān)系?
(2)上圖是公路上對(duì)汽車(chē)的限速標(biāo)志,表示汽車(chē)在該路段行使的速度不得超過(guò)40km/h.若用v(km/h)表示車(chē)的速度,那么v與40之間的數(shù)量關(guān)系用怎樣的式子表示?
(3)據(jù)科學(xué)家測(cè)定,太陽(yáng)表面的溫度不低于6000℃.設(shè)太陽(yáng)表面的溫度為t(℃),怎樣表示t與6000之間的關(guān)系?
歸納:數(shù)學(xué)作用之一,我們可以用數(shù)學(xué)語(yǔ)言描述客觀世界的某些現(xiàn)象
當(dāng)然,數(shù)學(xué)作用不僅于此,我們還可以通過(guò)數(shù)學(xué)解決現(xiàn)實(shí)生活中的問(wèn)題.
(一)情景設(shè)置
我校環(huán)境優(yōu)美,毗鄰江水,校園內(nèi)四季常青,但是遠(yuǎn)眺圍墻外,有一座小山,那是一座垃圾山.楊府山垃圾場(chǎng)有他的.歷史作用和意義,現(xiàn)在已經(jīng)完成了它的歷史使命,而且現(xiàn)在有了負(fù)面影響,市委市政府打算對(duì)其進(jìn)行改造.經(jīng)過(guò)專(zhuān)家論證,有如下方案可行:發(fā)電、制磚
(二)處理方案討論
現(xiàn)同時(shí)用兩種措施對(duì)垃圾山進(jìn)行改造處理,如果你是項(xiàng)目經(jīng)理,給你500萬(wàn)采購(gòu)發(fā)電設(shè)備以及制磚設(shè)備,你該如何去實(shí)施?
(學(xué)生自主發(fā)言)
學(xué)生問(wèn)題一、怎樣安排資金?買(mǎi)幾臺(tái)發(fā)電設(shè)備,幾臺(tái)制磚設(shè)備?如何決策?
引導(dǎo):?jiǎn)栴}轉(zhuǎn)化為如何安排資金,能取得最大效益?即兩種方案生產(chǎn)產(chǎn)品的利潤(rùn)(售價(jià)減去成本)
學(xué)生問(wèn)題二、如何知道這些信息?(產(chǎn)品售價(jià)、設(shè)備的單價(jià)等)
引導(dǎo)(先提問(wèn)學(xué)生):上網(wǎng)查詢、市場(chǎng)調(diào)查、向已建廠取經(jīng)、參觀展銷(xiāo)會(huì)等等.
(三)數(shù)據(jù)的篩選
由于教室條件限制,不能現(xiàn)場(chǎng)查取,所以老師幫你們收集了一些資料,希望對(duì)你們有所幫助.請(qǐng)分析以下信息,提取你認(rèn)為有用的數(shù)據(jù).
信息一、
信息二、
焚燒垃圾重量直接關(guān)系到垃圾發(fā)電企業(yè)的經(jīng)濟(jì)效益.在BOT的模式下,企業(yè)的效益這樣來(lái)保障:
1.每處理1噸垃圾,政府補(bǔ)貼發(fā)電企業(yè)73.8元,
2.保證以0.52元/千瓦時(shí)的價(jià)格收購(gòu)全部垃圾發(fā)電量,
3.一臺(tái)發(fā)電設(shè)備每處理1噸垃圾平均費(fèi)用為123元
4.一臺(tái)發(fā)電設(shè)備日處理垃圾能力為225噸,
5.1噸垃圾可發(fā)電300千瓦時(shí),其中30%為自用電
信息三、
發(fā)電設(shè)備:120萬(wàn)/臺(tái)制磚設(shè)備:35萬(wàn)/臺(tái)
機(jī)房總面積為7畝,每臺(tái)設(shè)備有各自平均占地,其中發(fā)電設(shè)備每臺(tái)平均占地1畝,制磚機(jī)每臺(tái)平占地1畝
(四)建立模型
你能從以上信息中提煉出你所需要的信息,并用數(shù)學(xué)語(yǔ)言表示出來(lái)嗎?
(學(xué)生動(dòng)手)
引導(dǎo):我們剛才處理的問(wèn)題即應(yīng)用題:
例一工廠欲生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)一件甲產(chǎn)品利潤(rùn)為60元,一臺(tái)甲設(shè)備價(jià)格為120萬(wàn),占地1畝,年生產(chǎn)能力為82125件;生產(chǎn)一件乙產(chǎn)品利潤(rùn)為0.12元,一臺(tái)乙設(shè)備價(jià)格為35萬(wàn),占地1畝,年生產(chǎn)能力為15000000件.現(xiàn)有資金500萬(wàn),廠房7畝,該廠該如何添置甲乙兩種設(shè)備,使得年利潤(rùn)最大?
(五)解決模型
該問(wèn)題即我們上節(jié)課剛學(xué)過(guò)的線性規(guī)劃問(wèn)題,請(qǐng)大家動(dòng)手解決.
(六)反饋實(shí)際
我們可以將我們的成果發(fā)到市長(zhǎng)信箱,為城市建設(shè)出謀劃策,貢獻(xiàn)自己的一份力量.
五、歸納小結(jié)
(一)解決生活問(wèn)題的步驟:
創(chuàng)設(shè)情境→方案討論→數(shù)據(jù)篩選→建立模型→解決模型→反饋實(shí)際
現(xiàn)實(shí)問(wèn)題:給你資金和地皮,購(gòu)置設(shè)備
方案討論:通過(guò)1.上網(wǎng)查詢2.市場(chǎng)調(diào)查3.吸收已建廠經(jīng)驗(yàn)等方法收集信息.
數(shù)據(jù)篩選及建立模型:將收集到的信息用數(shù)學(xué)語(yǔ)言表示出來(lái).
解決模型:用已學(xué)過(guò)的數(shù)學(xué)知識(shí)進(jìn)行分析、處理,得出結(jié)論.
反饋實(shí)際:將結(jié)論應(yīng)用于實(shí)際問(wèn)題當(dāng)中.
(二)順利解決生活問(wèn)題體要具備的能力
我們要具備信息收集及處理能力、生活語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言的能力以及扎實(shí)的數(shù)學(xué)解題能力.
各位領(lǐng)導(dǎo)
你們好!
今天我要為大家講的課題是 : 《 不等式及其解集 》 。
首先,我對(duì)本節(jié)教材進(jìn)行一些分析:
一、教材分析:
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位是:《 不等式及其解集 》是 新人教版 初中數(shù)學(xué)教材第 七 冊(cè)第 九 章第 1 節(jié)內(nèi)容。 學(xué)生已初步體會(huì)到生活中的量與量之間的關(guān)系,有相等與不等的情形,就是有大小之分…… 在此之前,學(xué)生已學(xué)習(xí)了 等式 基礎(chǔ)上,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。
2教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):
了解不等式及一元一次不等式概念。
理解不等式的解、解集,能正確表示不等式的解集。
(2)能力目標(biāo):
通過(guò)教學(xué)初步培養(yǎng)學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析、收集處理信息、團(tuán)結(jié)協(xié)作、語(yǔ)言表達(dá)的能力,以及通過(guò)師生 互動(dòng) ,初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力。
(3)情感目標(biāo):
通過(guò)對(duì) 《不等式及其解集》 的教學(xué),引導(dǎo)學(xué)生從現(xiàn)實(shí)生活的經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生對(duì)地理問(wèn)題的興趣,使學(xué)生了解地理知識(shí)的功能與價(jià)值,形成主動(dòng)學(xué)習(xí)的態(tài)度,讓學(xué)生初步認(rèn)識(shí)到地理知識(shí)的優(yōu)越性,同時(shí)滲透 安全教育 ;通過(guò)理論聯(lián)系實(shí)際的方式,通過(guò)知識(shí)的應(yīng)用,培養(yǎng)學(xué)生唯物主義的思想觀點(diǎn)。
3.重點(diǎn),難點(diǎn)以及確定的依據(jù):
本課中 不等式相關(guān)概念的理解和不等式的解集的表 是重點(diǎn), 不等式解集的理解 是本課的難點(diǎn),但由于學(xué)生年齡小,解決實(shí)際問(wèn)題能力弱,對(duì)理論聯(lián)系實(shí)際的問(wèn)題的理解難度大。下面,為了講清重難點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說(shuō)教法):
(一)教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。我在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:
1.“讀(看)——議——講”結(jié)合法
2 .讀圖討論法
3 .教學(xué)過(guò)程中堅(jiān)持啟發(fā)式教學(xué)的原則
基于本節(jié)課的特點(diǎn): 第一節(jié)知識(shí)性特點(diǎn) ,應(yīng)著重采用 自主探討 的教學(xué)方法。
(二)教學(xué)方法及其理論依據(jù):
堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,即“以學(xué)生活動(dòng)為主,教師講述為輔,學(xué)生活動(dòng)在前,教師點(diǎn)撥評(píng)價(jià)在后”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,聯(lián)系實(shí) 際安排教學(xué)內(nèi)容。采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看圖片 、討論基礎(chǔ)上,在教師啟發(fā)引導(dǎo)下,運(yùn)用問(wèn)題解決式教學(xué)法,師生交談法、問(wèn)答法、課堂討論法,引導(dǎo)學(xué)生根據(jù)現(xiàn)實(shí)生活的經(jīng)歷和體驗(yàn)及收集到的信息(感性材料)來(lái)理解課文中的理論知識(shí)。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)的機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效地開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使每個(gè)學(xué)生都能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過(guò)課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐,學(xué)以致用,落實(shí)教學(xué)目標(biāo)。
使學(xué)生學(xué)習(xí)對(duì)生活有用的數(shù)學(xué),學(xué)習(xí)對(duì)終身發(fā)展有用的數(shù)學(xué)的基本理念。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中要積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的。教師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
三、學(xué)情分析:(說(shuō)學(xué)法) :
1.學(xué)生特點(diǎn)分析:
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。從年齡特點(diǎn)來(lái)看,初中學(xué)生好動(dòng)、好奇、好表現(xiàn),抓住學(xué)生特點(diǎn),積極采用形象生動(dòng)、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上,青少年好動(dòng),注意力易分散,愛(ài)發(fā)表見(jiàn)解,希望得到老師的表?yè)P(yáng),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見(jiàn)解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。
2.知識(shí)障礙上:
(1)知識(shí)掌握上,學(xué)生原有的知識(shí) 等式 ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng) 更學(xué)生更過(guò)的時(shí)間分組預(yù)習(xí)討論 。
(2)學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙。 不等式解集的表示方法
知識(shí),學(xué)生不易理解,所以教學(xué)中教師應(yīng)予以簡(jiǎn)單明白、深入淺出的分析。
3.動(dòng)機(jī)和興趣上:
明確的學(xué)習(xí)目的。教師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:
四、教學(xué)程序及設(shè)想:
教學(xué)程序:
(一)課堂結(jié)構(gòu): 出示學(xué)習(xí)目標(biāo),預(yù)習(xí)展示 , 練習(xí)反饋 , 課堂自測(cè), 布置作業(yè) 五 個(gè)部分。
(二)教學(xué)簡(jiǎn)要過(guò)程:
1、 出示學(xué)習(xí)目標(biāo),課前預(yù)習(xí)
出示學(xué)習(xí)目標(biāo),學(xué)生觀察學(xué)習(xí)目標(biāo),自主預(yù)習(xí)。
設(shè)計(jì)意圖:有了明確的學(xué)習(xí)目標(biāo)才能激發(fā)起學(xué)生的學(xué)習(xí)熱情,才能充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
學(xué)生分小組進(jìn)行自主探究學(xué)習(xí),同學(xué)之間進(jìn)行合作交流,教師巡視指導(dǎo),觀察學(xué)生的探究方法,并傾聽(tīng)學(xué)生之間的探討。
【設(shè)計(jì)意圖】:本次任務(wù)為本節(jié)課的核心任務(wù),其目的是通過(guò)學(xué)生的自主學(xué)習(xí),理解本節(jié)幾個(gè)概念,并通過(guò)學(xué)生的舉例回答,從具體的實(shí)例中去掌握這幾個(gè)概念。
2 、預(yù)習(xí)反饋
讓學(xué)生自己來(lái)講解,有利于提高學(xué)生的語(yǔ)言表達(dá)能力,學(xué)生用語(yǔ)言來(lái)概括這幾個(gè)概念,培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力及抽象概念能力。
3 、老師歸納,練習(xí)反饋
歸納補(bǔ)充知識(shí)點(diǎn),并進(jìn)行練習(xí)反饋。針對(duì)每個(gè)知識(shí)點(diǎn)設(shè)置不同的練習(xí)。如
1 ) 、不等式的定義設(shè)置 , (判斷)下列各式是否為不等式;
(1)-2<5 (2)x+3> 2x (3)4x-2y<0 (4)a-2b
(5)x2-2x+1<0 (6) a+b≠c (7)5m+3=8 (8)x≤-4
2 ) 、 用不等式表示:
⑴ a與1的和是正數(shù);
⑵ y的2倍與1的和小于3;
⑶ y的3倍與x的2倍的和是非負(fù)數(shù) ;
⑷ x乘以3的積加上2最多為5.
3 ) 、下列說(shuō)法正確的是( )
A. x=3是2x>1的解
B. x=3是2x>1的唯一解
C. x=3不是2x>1的解
D. x=3是2x>1的解集
及認(rèn)識(shí)不等式解集的表示方法有兩種:最簡(jiǎn)形式與在數(shù)軸上表示。分組討論找規(guī)律,記口訣。(定界點(diǎn),定方向)相關(guān)題型:
用數(shù)軸表示不等式的解集:
(1)x>-2; (2)x≤3; (3)y≤0
找三名同學(xué)上臺(tái)展示。
展示學(xué)生的成果,讓學(xué)生在學(xué)習(xí)過(guò)程中感受學(xué)習(xí)的樂(lè)趣和成功的喜悅,增強(qiáng)學(xué)生的學(xué)習(xí)興趣。
體會(huì)不等式是解決實(shí)際問(wèn)題的有效工具。
4 、課堂自測(cè)
檢測(cè)學(xué)習(xí)本節(jié)課的掌握情況。
5 、布置作業(yè)
分層作業(yè)。針對(duì)學(xué)生的學(xué)習(xí)情況,讓每一名同學(xué)都 能完成 老師布置的任務(wù),增強(qiáng)成就感及學(xué)習(xí)數(shù)學(xué)的興趣。 A類(lèi): 教科書(shū)P119,120:1,2,3;B 類(lèi): 卷:能力提高作業(yè)。
五、 反思:
本節(jié)教學(xué),有以下幾點(diǎn)特別值得回味的地方。
1、從生活中來(lái)回到生活中去的教學(xué)設(shè)計(jì)
新課標(biāo)指出:“數(shù)學(xué)的教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有知識(shí)經(jīng)驗(yàn)基礎(chǔ)上?!毙睦韺W(xué)的研究表明,學(xué)習(xí)內(nèi)容和學(xué)生生活背景、知識(shí)背景越接近,學(xué)生自覺(jué)接納知識(shí)懂得的程度就越高。導(dǎo)入的恰當(dāng)、合理會(huì)引起學(xué)生極大的學(xué)習(xí)興趣,對(duì)知識(shí)的銜接和理順起到畫(huà)龍點(diǎn)睛的作用,又對(duì)新知識(shí)起到設(shè)疑、點(diǎn)拔的作用。用學(xué)生身邊感興趣的實(shí)例 過(guò)馬路、蹺蹺板體驗(yàn)生活中的不等式 ,一方面引起學(xué)生的參與欲,另一方面也體現(xiàn)了知識(shí)拓展的需要。因?yàn)檫@樣既可引出一元一次不等式的意義,又讓學(xué)生產(chǎn)生學(xué)習(xí)不等式的需求,也使學(xué)生對(duì)解不等式 的方法有了很自然的聯(lián)想 讓學(xué)生充分感受到學(xué)習(xí)一元一次不等式的必要性。使學(xué)生進(jìn)一步認(rèn)識(shí)到“數(shù)學(xué)來(lái)源于生活,反過(guò)來(lái)又為生活服務(wù)”,增強(qiáng)學(xué)好數(shù)學(xué)的信心與決定。
2、重視數(shù)學(xué)思想方法的滲透
數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,知識(shí)轉(zhuǎn)化為能力的橋梁。在整節(jié)課的教學(xué)中都非常重視數(shù)學(xué)思想方法的滲透。學(xué)習(xí)不等式時(shí),類(lèi)比方程、不等式解集的概念,滲透“類(lèi)比”思想。使學(xué)生在已有知識(shí)上進(jìn)行遷移,在主動(dòng)參與、探索交流中不知不覺(jué)學(xué)到了新知識(shí)。利用數(shù)軸求不等式的解集,滲透“數(shù)形結(jié)合”思想。掌握不等式的解集 在數(shù)軸上的表示 ,利用數(shù)軸把解集 講解得非常透徹,使學(xué)生充分認(rèn)識(shí)到“數(shù)形結(jié)合”思想方法的用處。列不等式解決實(shí)際問(wèn)題,滲透“建模”思想,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。最后的小結(jié),不是流俗的學(xué)習(xí)內(nèi)容小結(jié),而是思想方法的小結(jié),它起到了提綱挈領(lǐng),梳理總結(jié)的目的。
3、重視數(shù)學(xué)的“再創(chuàng)造”
課堂教學(xué)改革的宗旨和根本出發(fā)點(diǎn)是:改善和促進(jìn)學(xué)生全面、持續(xù)、和諧地發(fā)展。建構(gòu)主義理論強(qiáng)調(diào)學(xué)習(xí)的主動(dòng)性、社會(huì)性和情景性,認(rèn)為學(xué)習(xí)者不是知識(shí)信息的被動(dòng)吸收者,而是主動(dòng)積極的建構(gòu)者。留給學(xué)生的作業(yè):完成課外探究題,借助數(shù)軸歸納求不等式的解集一般規(guī)律。教學(xué)時(shí)重視了數(shù)學(xué)的“再創(chuàng)造”,由學(xué)生本人把需學(xué)的東西自己去發(fā)現(xiàn)和創(chuàng)造出來(lái)。學(xué)生的學(xué)習(xí)不再是一種被動(dòng)地吸收知識(shí),反復(fù)練習(xí),強(qiáng)化儲(chǔ)存知識(shí)的過(guò)程,而是通過(guò)反復(fù)研究、探索、思考、概括,親身經(jīng)歷“再創(chuàng)造”的探究性學(xué)習(xí)過(guò)程,從而自主獲得知識(shí)。
總之,教學(xué)設(shè)計(jì)時(shí)體現(xiàn)新課程標(biāo)準(zhǔn)的思想和理念,注重知識(shí)與能力并重,培養(yǎng)發(fā)展學(xué)生自主探索的獨(dú)立思考精神。
一教材分析
1、教材地位和作用
均值不等式又叫做基本不等式,選自人教B版(必修5)的3章的2節(jié)的內(nèi)容,是在上節(jié)不等式性質(zhì)的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究.同時(shí)也是為了以后學(xué)習(xí)中的幾種重要不等式,以及不等式的證明作鋪墊,起著承上啟下的作用。
本節(jié)內(nèi)容具有變通靈活性、應(yīng)用廣泛性、條件約束性等特點(diǎn),所以本節(jié)課可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)靈活解決實(shí)際問(wèn)題的能力。
“均值不等式”在不等式的證明和求最值過(guò)程中有著廣泛的應(yīng)用。求最值是高考的熱點(diǎn)。它在科學(xué)研究、經(jīng)濟(jì)管理、工程設(shè)計(jì)上都有廣泛的作用。
2、教學(xué)目標(biāo)
A.知識(shí)目標(biāo):學(xué)會(huì)推導(dǎo)并掌握均值不等式,理解這個(gè)均值不等式的幾何意義,并掌握定理中取等號(hào)的條件.B.能力目標(biāo):通過(guò)對(duì)均值不等式的推導(dǎo)過(guò)程,提高學(xué)生探究問(wèn)題,分析與解決問(wèn)題的能力。參透類(lèi)比思想,數(shù)形結(jié)合的思想,優(yōu)化了學(xué)生的思維品質(zhì)。
C.情感目標(biāo):(1)通過(guò)探索均值不等式的證明過(guò)程,培養(yǎng)探索、研究精神。(2)通過(guò)對(duì)均值不等式成立的條件的分析,養(yǎng)成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài),并形成勇于提出問(wèn)題、分析問(wèn)題的習(xí)慣。
3、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):
通過(guò)對(duì)新課程標(biāo)準(zhǔn)的解讀,教材內(nèi)容的解析,我認(rèn)為結(jié)果固然重要,但數(shù)學(xué)學(xué)習(xí)過(guò)程更重要,它有利于培養(yǎng)學(xué)生的數(shù)學(xué)思維和探究能力,所以均值不等式的推導(dǎo)是本節(jié)課的重點(diǎn)
難點(diǎn):
很多同學(xué)對(duì)均值不等式成立的條件的認(rèn)識(shí)不深刻,在應(yīng)用時(shí)候常常出錯(cuò)誤,所以,均值不等式成立的條件是本節(jié)課的難點(diǎn)
二教法學(xué)法分析
1.教法
本節(jié)課主要采用探究歸納,啟發(fā)誘導(dǎo),講練結(jié)合的教學(xué)方法。以學(xué)生為主體,以均值不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。
2、教學(xué)手段
為了使抽象變?yōu)榫唧w,我使用了多媒體。為了突出重點(diǎn)我使用了彩色粉筆。3,學(xué)法
從實(shí)際生活出發(fā),通過(guò)創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生經(jīng)歷由實(shí)際問(wèn)題出發(fā),探求均值不等式,發(fā)現(xiàn)均值不等式的實(shí)質(zhì),利用均值不等式解決實(shí)際問(wèn)題的過(guò)程。使學(xué)生從代數(shù)證明和幾何證明兩方面理解并掌握基本不等式。
三教學(xué)過(guò)程
(一)、創(chuàng)設(shè)情景,引入課題
從古至今中國(guó)人有很多發(fā)明創(chuàng)造推動(dòng)了和推動(dòng)著世界的前進(jìn),在這璀璨的星空里,最耀眼的一顆就是被奉為2002年北京國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽的《趙爽弦圖》(動(dòng)畫(huà)打出)。
如圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。這就是公元前1000多年前我國(guó)數(shù)學(xué)家趙爽發(fā)現(xiàn)并記錄在《周脾算經(jīng)》中的發(fā)現(xiàn)和證明勾股定理的《趙爽弦圖》;它比歐洲畢達(dá)哥拉斯學(xué)派的發(fā)現(xiàn)早了500多年。
你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎?
設(shè)計(jì)意圖:勾起學(xué)生強(qiáng)烈的民族自豪感和強(qiáng)烈的求知欲,并對(duì)學(xué)生滲透愛(ài)國(guó)主義教育,同時(shí)告訴學(xué)生記住我國(guó)光輝而燦爛的歷史。
探究圖形中的不等關(guān)系(用提問(wèn)題的方式)
將圖中的“風(fēng)車(chē)”抽象成如圖,在正方形ABCD中有4個(gè)全等的直角三角形。
設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b
4個(gè)直角
22三角形的面積的和是2ab,正方形的面積為a?b。
由于4個(gè)直角三角形的面積和小于正方形的面積,22我們就得到了一個(gè)不等式:a?b?2ab。
當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),22正方形EFGH縮為一個(gè)點(diǎn),這時(shí)有a?b?2ab。
22a,b?R,那么a?b?2ab(當(dāng)且僅當(dāng)a?b時(shí)取“?”號(hào))得到結(jié)論:重要不等式:如果
具有這種形式的式子就是我們今天要討論的問(wèn)題.(二)新課講授。
1給出均值定理(在老師寫(xiě)均值不等式定理時(shí),要求同學(xué)在課本上了解均值定理,并思考怎樣證明。),師生一起證明均值不等式。
a?ba?0,b?0)2要證:?????????①
即證:a?b????????????②
要證②,只要證:a?b??0????③
2要證③,只要證:(-)?0 ??④
點(diǎn)評(píng),強(qiáng)調(diào)取等條件;
2.?a?b2的幾何意義 a?b?a?0,b?0)2當(dāng)a≠b時(shí),OC>CD,即
a?b?當(dāng)a=b時(shí),OC=CD,即
2我們是否能從圖中看見(jiàn)當(dāng)D向O點(diǎn)移動(dòng)時(shí)CD是逐漸變長(zhǎng)了,當(dāng)D,O重合時(shí)CD最長(zhǎng),并且a=b.a?b
3.在數(shù)學(xué)中,我們稱(chēng)2為正數(shù)a、b的算術(shù)平均數(shù),稱(chēng)ab為正數(shù)a、b的幾何平均數(shù).均值不等式還可敘述為:兩個(gè)正數(shù)的幾何平均數(shù)不大于它們的算術(shù)平均數(shù).設(shè)計(jì)意圖:探索發(fā)現(xiàn),觀察歸納,形成概念,加深對(duì)均值不等式的認(rèn)識(shí)和理解;培養(yǎng)學(xué)生數(shù)形結(jié)合的思想方法和對(duì)比的數(shù)學(xué)思想,多方面思考問(wèn)題的能力.讓學(xué)生積極的參與到學(xué)習(xí)中來(lái),激發(fā)學(xué)生的學(xué)習(xí)興趣。
(三)例題講解(精講第一題)
例,矩形的面積為100 m2,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形周長(zhǎng)最短。最短周長(zhǎng)是多少?
用波利亞的4環(huán)節(jié)來(lái)進(jìn)行解題
1:審題(把實(shí)際問(wèn)題數(shù)學(xué)化)
2:分析(矩形的長(zhǎng)與寬的乘積是一個(gè)常數(shù),求長(zhǎng)與寬的和的2倍的最小值;)3:解題
4:回顧(給出規(guī)律:規(guī)律:兩個(gè)正數(shù)的積為常數(shù)時(shí),它們的和有最小值)。
設(shè)計(jì)意圖:這個(gè)例題體現(xiàn)了基本不等式的實(shí)用價(jià)值。隨著高考綜合科目的確定,聯(lián)系各個(gè)學(xué)科的試題將會(huì)不斷出現(xiàn),數(shù)學(xué)作為工具性的學(xué)科,學(xué)好數(shù)學(xué),也增強(qiáng)了攻讀好其他學(xué)科的信心。
為了體現(xiàn)夸美紐斯的鞏固性原則,我設(shè)計(jì)了下面練習(xí)。
練習(xí):已知矩形的周長(zhǎng)是36m,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形的面積最大?最大面積是多少?
先老師對(duì)該練習(xí)進(jìn)行提示,再抽一位同學(xué)在黑板上來(lái)練習(xí),其他同學(xué)在下面練習(xí)。做完后大家一起點(diǎn)評(píng)該練習(xí),不讓同學(xué)通過(guò)上面的回顧來(lái)終結(jié)下面的規(guī)律:
兩個(gè)正數(shù)的和為常數(shù)時(shí),它們的積有最大值
四小結(jié)(教師引導(dǎo)學(xué)生小結(jié)本節(jié)課):
知識(shí):均值定理及其成立的條件,及其均值定理的應(yīng)用
方法:一正,二定,三相等。
思想:類(lèi)比和數(shù)形結(jié)合的思想。
設(shè)計(jì)意圖:培養(yǎng)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行概括歸納的能力,鞏固所學(xué)知識(shí).
五作業(yè):
基礎(chǔ)題:課本 第77頁(yè)A組 1.提高題:課本 第77頁(yè)A組 3.4研究題:設(shè)正數(shù)a、b,試盡可能多的給出含有a和b的兩個(gè)元素的不等式
板書(shū)設(shè)計(jì):
為了更好的板書(shū)本節(jié)課的內(nèi)容,使整個(gè)板面重點(diǎn)突出,層次分明,我將黑板分為四版.定理例題練習(xí)副版
定理的證明講解講解
課題:§3.2.3均值不等式課時(shí):第3課時(shí) 授課時(shí)間:授課類(lèi)型:新授課
【教學(xué)目標(biāo)】
1.知識(shí)與技能:了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。
2.過(guò)程與方法:培養(yǎng)學(xué)生的探究能力以及分析問(wèn)題、解決問(wèn)題的能力。
3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)善于思考、勤于動(dòng)手的學(xué)習(xí)品質(zhì)。
【教學(xué)重點(diǎn)】了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。
【教學(xué)難點(diǎn)】了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。
【教學(xué)過(guò)程】
例
1、已知a、b、c∈R,求證:
不等式的左邊是根式,而右邊是整式,應(yīng)設(shè)法通過(guò)適當(dāng)?shù)姆趴s變換將左邊各根式的被開(kāi)方式轉(zhuǎn)化為完全平方式,再利用不等式的性質(zhì)證得原命題。
a2b2c
2???a?b?c 例
2、若a,b,c?R,則bca?
本題若用“求差法”證明,計(jì)算量較大,難以獲得成功,注意到a , b , c∈R,從結(jié)論的特點(diǎn)出發(fā),均值不等式,問(wèn)題是不難獲證的。
+
例
3、已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a?b?c?ab?bc?ca 證明:∵a?b?2abb?c?2bcc?a?2ca
以上三式相加:2(a?b?c)?2ab?2bc?2ca
∴a?b?c?ab?bc?ca
例
4、已知a,b,c,d都是正數(shù),求證:(ab?cd)(ac?bd)?4abcd
分析:此題要求學(xué)生注意與均值不等式定理的“形”上發(fā)生聯(lián)系,從而正確運(yùn)用,同22222222222222
2證明:∵a,b,c,d都是正數(shù),∴ab>0,cd>0,ac>0,bd>
得ab?cdac?bd??0,??0.22
(ab?cd)(ac?bd)?abcd.4由不等式的性質(zhì)定理4的推論1,得 ?
即(ab?cd)(ac?bd)?4abcd
小結(jié):正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)
課堂練習(xí):第73頁(yè)習(xí)題B 3、4課后作業(yè):第73頁(yè)習(xí)題B 5、6
板書(shū)設(shè)計(jì):
教學(xué)反思:
《均值不等式》說(shuō)課稿
山東陵縣一中 燕繼龍李國(guó)星
尊敬的各位評(píng)委、老師們:
大家好!我今天說(shuō)課的題目是 《均值不等式》,下面我從教材分析,教學(xué)目標(biāo),教學(xué)重點(diǎn)、難點(diǎn),教學(xué)方法,學(xué)生學(xué)法,教學(xué)過(guò)程,板書(shū)設(shè)計(jì),效果分析八個(gè)方面說(shuō)說(shuō)我對(duì)這堂課的設(shè)計(jì)。
一、教材分析:
均值不等式又稱(chēng)基本不等式,選自普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教B版)必修5第三章第3節(jié)內(nèi)容。是不等式這一章的核心,在高中數(shù)學(xué)中有著比較重要的地位。對(duì)于不等式的證明及利用均值不等式求最值等實(shí)際問(wèn)題都起到工具性作用。通過(guò)本節(jié)的學(xué)習(xí)有利于學(xué)生對(duì)后面不等式的證明及前面函數(shù)的一些最值值域進(jìn)一步研究,起到承前啟后的作用。
二、教學(xué)目標(biāo):
1、知識(shí)與技能:
(1)掌握均值不等式以及其成立的條件;
(2)能運(yùn)用均值不等式解決一些較為簡(jiǎn)單的問(wèn)題。
2、過(guò)程與方法:
(1)探索并了解均值不等式的證明過(guò)程、體會(huì)均值不等式的證明方法;
(2)培養(yǎng)探究能力以及分析問(wèn)題、解決問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀:
(1)通過(guò)探索均值不等式的證明過(guò)程,培養(yǎng)探索、鉆研、合作精神;
(2)通過(guò)對(duì)均值不等式成立條件的分析,養(yǎng)成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度;
(3)認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),通過(guò)數(shù)學(xué)思維認(rèn)知世界。
三、教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):通過(guò)對(duì)新課程標(biāo)準(zhǔn)的解讀,教材內(nèi)容的解析,我認(rèn)為結(jié)果固然重要,但數(shù)學(xué)學(xué)習(xí)過(guò)程更重要,它有利于培養(yǎng)學(xué)生的數(shù)學(xué)思維和探究能力,所以均值不等式的推導(dǎo)是本節(jié)課的重點(diǎn)之一;再者,均值不等式有比較廣泛的應(yīng)用,需重點(diǎn)掌握,而用好均值不等式,關(guān)鍵是對(duì)不等式成立條件的準(zhǔn)確理解,因此,均值不等式及其成立的條件也是教學(xué)重點(diǎn)。
難點(diǎn):很多同學(xué)對(duì)均值不等式成立的條件的認(rèn)識(shí)不深刻,在應(yīng)用時(shí)候常常出現(xiàn)錯(cuò)誤,所以,均值不等式成立的條件是本節(jié)課的難點(diǎn)。
四、教學(xué)方法:
為了達(dá)到目標(biāo)、突出重點(diǎn)、突破難點(diǎn)、解決疑點(diǎn),我本著以教師為主導(dǎo)的原則,再結(jié)合本節(jié)的實(shí)際特點(diǎn),確定本節(jié)課的教學(xué)方法。
突出重點(diǎn)的方法:我將通過(guò)引導(dǎo)啟發(fā)、學(xué)生展示來(lái)突出均值不等式的推導(dǎo);通過(guò)多媒體展示、來(lái)突出均值不等式及其成立的條件。
突破難點(diǎn)的方法:我將采用重復(fù)法(在課堂的每一環(huán)節(jié),以各種方式進(jìn)行強(qiáng)調(diào)均值不等式和
來(lái)突破均值不等式成立的條件這個(gè)難點(diǎn)。
此外還將繼續(xù)采用個(gè)人和小組積分法,調(diào)動(dòng)學(xué)生積極參與的熱情。
五、學(xué)生學(xué)法:
在學(xué)生的學(xué)習(xí)中,注重知識(shí)與能力,過(guò)程與方法,情感態(tài)度和價(jià)值觀三個(gè)方面的共同發(fā)展。充分體現(xiàn)學(xué)生是主體,具體如下:
1、課前預(yù)習(xí)----學(xué)會(huì);、明確重點(diǎn)、解決疑點(diǎn);
2、分組討論
3、積極參與----敢于展示、大膽質(zhì)疑、爭(zhēng)相回答;
4、自主探究----學(xué)生實(shí)踐,鞏固提高;
六、教學(xué)過(guò)程:
采取“三步驟四環(huán)節(jié)和諧高效課堂”教學(xué)模式,運(yùn)用學(xué)案導(dǎo)學(xué)開(kāi)展本節(jié)課的教學(xué),首先進(jìn)行
:課前預(yù)習(xí)
(一)成果反饋
1.對(duì)課前小組合作完成的現(xiàn)實(shí)生活中的問(wèn)題:
“今有一臺(tái)天平,兩臂不等長(zhǎng),要用它稱(chēng)物體質(zhì)量,將物體放在左、右托盤(pán)各稱(chēng)一次,稱(chēng)得的質(zhì)量分別為a,b,問(wèn):能否用a,b的平均值表示物體的真實(shí)質(zhì)量?若不能,這二者是什么關(guān)系?”
進(jìn)行多媒體情景演示,抽小組派代表回答,從而引出均值不等式抽出兩名同學(xué)上黑板完成2、32.均值定理:_____________________________________
a?b
2?。
預(yù)備定理:a2?b2?2ab(a,b?R),仿照預(yù)備定理的證明證明均值定理 3.已知ab>0,求證:?
ab
ab?2,并推導(dǎo)出式中等號(hào)成立的條件。
與此同時(shí),其他同學(xué)分組合作探究和均值定理有關(guān)的以下問(wèn)題,教師巡視并參與討論,適時(shí)點(diǎn)撥。
① 適用范圍a,b?________,x?0,x?
1x??2
對(duì)嗎?
② 等號(hào)成立的條件,當(dāng)且僅當(dāng)__________時(shí),________=_________ ③ 語(yǔ)言表述:兩個(gè)___數(shù)的____平均數(shù)_____它們的_______平均數(shù) ④ 把不等式_________________又稱(chēng)為均值或________不等式 ⑤ 數(shù)列觀點(diǎn):兩個(gè)正數(shù)的______中項(xiàng)不小于它們的_____中項(xiàng)
。⑥ 幾何解釋?zhuān)ㄒ?jiàn)右圖):________________
⑦常見(jiàn)變形a?b?_______
?________,即ab?
___________。例:
4、(1)一個(gè)矩形的面積為100 m,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形的周長(zhǎng)最短?最短周長(zhǎng)是多少?(2)已知矩形的周長(zhǎng)是36m,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形的面積最大?最大面積是多少?
由此題可以得出兩條重要規(guī)律:
兩個(gè)正數(shù)的積為常數(shù)時(shí),它們的和有______值; 兩個(gè)正數(shù)的和為常數(shù)時(shí),它們的積有______值。
等待兩名同學(xué)做完后,適時(shí)終止討論,學(xué)生各就各位。首先針對(duì)黑板上這兩道題發(fā)動(dòng)學(xué)生上來(lái)捉錯(cuò)(用不同色粉筆),然后再由老師完善,以此加深學(xué)生對(duì)定理及應(yīng)用條件的認(rèn)識(shí)。其次,老師根據(jù)剛才巡視掌握的情況,結(jié)合多媒體進(jìn)行有針對(duì)性的講解(重點(diǎn)應(yīng)強(qiáng)調(diào)均值定理的幾何解釋?zhuān)喊霃讲恍∮诎胂?,以及用三角形相似或射影定理的幾何證明過(guò)程,使定理“形化”),進(jìn)一步加深學(xué)生對(duì)定理的認(rèn)識(shí)及應(yīng)用能力,初步掌握用均值定理求函數(shù)最值時(shí)要注意“一正、二定、三相等”
第二步:課內(nèi)探究
(二)精講點(diǎn)撥 1.例:求函數(shù)f(x)?
?2x?x?
3x
(x?0)的最大值,及此時(shí)x的值。
先和學(xué)生們一起探討該問(wèn)題的解題思路,先拆分再提出“-”號(hào),為使用均值定理創(chuàng)造條件,后由學(xué)生們獨(dú)立完成,教師通過(guò)巡視或提問(wèn)發(fā)現(xiàn)問(wèn)題,通過(guò)多媒體演示來(lái)解決問(wèn)題,該例題主要讓學(xué)生注意定理的應(yīng)用條件及一些變形技巧。
2.多媒體展示辨析對(duì)錯(cuò):
?這幾道辨析題先讓學(xué)生們捉錯(cuò),再由
多媒體給出答案,創(chuàng)設(shè)情境加深學(xué)生對(duì)用均值定理求函數(shù)最值時(shí)注意“一正、二定、三相等”的認(rèn)識(shí)
(三)有效訓(xùn)練
1.(獨(dú)立完成)下列函數(shù)的最小值為2的是()
A、y?x?
1x
B、y?sinx?
1sinx
(0?x?
?)
C、y??
1D、y?tanx?
本題意在鞏固用均值定理求函數(shù)最值時(shí)要注意“一正、二定、三相等”,待學(xué)生完成后,隨機(jī)抽取幾名學(xué)生說(shuō)一下答案,選D,應(yīng)該不會(huì)有問(wèn)題。
2.(小組合作探究)一扇形中心角為α,所在圓半徑為R。若扇形周長(zhǎng)為一常值C(C>0),當(dāng)α為何值時(shí),扇形面積最大,并求此最大值。
本題若直接運(yùn)用均值不等式不會(huì)出現(xiàn)定值,需要拼湊。待學(xué)生討論過(guò)后,先通答案,??2時(shí)扇形面積最大值為
c
tanx
(0?x?
?)
。若有必要,抽派小組代表到講臺(tái)上講解,及時(shí)反饋矯正。
(四)本節(jié)小結(jié)
小結(jié)本節(jié)課主要內(nèi)容,知識(shí)點(diǎn),由學(xué)生總結(jié),教師完善,不外乎: 1.兩個(gè)重要不等式
a?b?2ab(a,b?R,當(dāng)且僅當(dāng)a?b時(shí)取“?”)
2a?b2
?a,b?R,當(dāng)且僅當(dāng)a?b時(shí)取“?”)
?
2.用均值定理求函數(shù)最值時(shí)要注意“一正、二定、三相等”。
(一)、雙基達(dá)標(biāo)(必做,獨(dú)立完成):
1、課本第71頁(yè)練習(xí)A、B;
2、已知x??1,求y?x?6?
x?
1的最值;
(二)、拓展提高(供選做, 可小組合作完成):
?
23、若a,b?R且a?
b
?1,求a?最大值及此時(shí)a,b的值.4、a?0,b?0,且
5、求函數(shù)f(x)?
1a
?
9b
?1,求a?b最小值.x?3x?1x?
1(x??1)的最小值。
通過(guò)作業(yè)使學(xué)生進(jìn)一步鞏固本節(jié)課所學(xué)內(nèi)容,注重分層次設(shè)計(jì)題目,更加關(guān)注學(xué)生的差異。
七、板書(shū)設(shè)計(jì):
由于本節(jié)采用多媒體教學(xué),板書(shū)比較簡(jiǎn)單,且大部分是學(xué)生的展示。
八、效果分析:
本節(jié)課采取了我校推行的“三步驟四環(huán)節(jié)和諧高效課堂”教學(xué)模式,通過(guò)學(xué)案導(dǎo)學(xué),多媒體展示,師生互動(dòng),生生互動(dòng)。學(xué)生基本能掌握均值不等式以及其成立的條件;能運(yùn)用均值不等式解決一些較為簡(jiǎn)單的問(wèn)題。但用均值定理求函數(shù)最值時(shí)要注意“一正、二定、三相等”,說(shuō)起來(lái)容易做起來(lái)難,學(xué)生還得通過(guò)反思和課后訓(xùn)練進(jìn)一步體會(huì)。
我的說(shuō)課到此結(jié)束,懇請(qǐng)各位評(píng)委和老師們批評(píng)指正,謝謝!
【教學(xué)目標(biāo)】
1.通過(guò)具體情境讓學(xué)生感受和體驗(yàn)現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,鼓勵(lì)學(xué)生用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,使學(xué)生感受數(shù)學(xué)、走進(jìn)數(shù)學(xué)、改變學(xué)生的數(shù)學(xué)學(xué)習(xí)態(tài)度。
2.建立不等觀念,并能用不等式或不等式組表示不等關(guān)系。
3.了解不等式或不等式組的實(shí)際背景。
4.能用不等式或不等式組解決簡(jiǎn)單的實(shí)際問(wèn)題。
【重點(diǎn)難點(diǎn)】
重點(diǎn):
1.通過(guò)具體的問(wèn)題情景,讓學(xué)生體會(huì)不等量關(guān)系存在的普遍性及研究的必要性。
2.用不等式或不等式組表示實(shí)際問(wèn)題中的不等關(guān)系,并用不等式或不等式組研究含有簡(jiǎn)單的不等關(guān)系的問(wèn)題。
3.理解不等式或不等式組對(duì)于刻畫(huà)不等關(guān)系的意義和價(jià)值。
難點(diǎn):
1.用不等式或不等式組準(zhǔn)確地表示不等關(guān)系。
2.用不等式或不等式組解決簡(jiǎn)單的含有不等關(guān)系的實(shí)際問(wèn)題。
【方法手段】
1.采用探究法,按照閱讀、思考、交流、分析,抽象歸納出數(shù)學(xué)模型,從具體到抽象再?gòu)某橄蟮骄唧w的方法進(jìn)行啟發(fā)式教學(xué)。
2.教師提供問(wèn)題、素材,并及時(shí)點(diǎn)撥,發(fā)揮老師的主導(dǎo)作用和學(xué)生的主體作用。
3.設(shè)計(jì)教典型的現(xiàn)實(shí)問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性。
【教學(xué)過(guò)程】
教學(xué)環(huán)節(jié)
教師活動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
導(dǎo)入新課
日常生活中,同學(xué)們發(fā)現(xiàn)了哪些數(shù)量關(guān)系。你能舉出一些例子嗎?
實(shí)例1.某天的天氣預(yù)報(bào)報(bào)道,最高氣溫35℃,最低氣溫29℃。
實(shí)例2.若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零。
實(shí)例3.兩點(diǎn)之間線段最短。
實(shí)例4.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
引導(dǎo)學(xué)生想生活中的例子和學(xué)過(guò)的數(shù)學(xué)中的例子。在老師的引導(dǎo)下,學(xué)生肯定會(huì)迫不及待的能說(shuō)出很多個(gè)例子來(lái)。即活躍了課堂氣氛,又激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
推進(jìn)新課
同學(xué)們所舉的這些例子聯(lián)系了現(xiàn)實(shí)生活,又考慮到數(shù)學(xué)上常見(jiàn)的數(shù)量關(guān)系,非常好。而且大家已經(jīng)考慮到本節(jié)課的標(biāo)題《不等關(guān)系與不等式》,所舉的實(shí)例都是反映不等量的關(guān)系。
(下面利用電腦投影展示兩個(gè)實(shí)例)
實(shí)例5:限時(shí)40km/h的路標(biāo),指示司機(jī)在前方路段行使時(shí),應(yīng)使汽車(chē)的速度v不超過(guò)40km/h。
實(shí)例6:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.
同學(xué)們認(rèn)真觀看顯示屏幕上老師所舉的例子。
讓學(xué)生們邊看邊思考:生活中有許多的事情的描述可以采用不等的數(shù)量關(guān)系來(lái)描述
過(guò)程引導(dǎo)
能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說(shuō)明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門(mén)學(xué)科,但是我們還要能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)、進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過(guò)程,那么我們用什么知識(shí)來(lái)表示這些不等關(guān)系呢?
什么是不等式呢?
用大屏幕展示一組不等式-71+4;2x≤6;a+2≥0;3≠4.
能用不等式及不等式組把這些不等關(guān)系表示出來(lái),也就是建立不等式數(shù)學(xué)模型的過(guò)程通過(guò)對(duì)不等式數(shù)學(xué)模型的'研究,反過(guò)來(lái)作用于現(xiàn)實(shí)生活,這才是學(xué)習(xí)數(shù)學(xué)的最終目的。
思考并回答老師的問(wèn)題:可以用不等式或不等式組來(lái)表示不等關(guān)系。
經(jīng)過(guò)老師的啟發(fā)和點(diǎn)撥,學(xué)生可以自己總結(jié)出:用不等號(hào)將兩個(gè)解析試連接起來(lái)所成的式子叫不等式。
目的是讓學(xué)生回憶不等式的一些基本形式,并說(shuō)明不等號(hào)≤,≥的含義,是或的關(guān)系?;貞浟瞬坏仁降母拍?,不等式組學(xué)生自然而然就清楚了。
此時(shí)學(xué)生已經(jīng)迫不及待地想說(shuō)出自己的觀點(diǎn)了。
合作探究
(一)。下面我們把上述實(shí)例中的不等量的關(guān)系用不等式或不等式組一一的表示出來(lái),那應(yīng)該怎么表示呢?
這兩位同學(xué)的觀點(diǎn)是否正確?
老師要表?yè)P(yáng)學(xué)生:“很好!這樣思考問(wèn)題很?chē)?yán)密。”應(yīng)該用不等式組來(lái)表示此實(shí)際問(wèn)題中的不等量關(guān)系,也可以用“且”的形式來(lái)表達(dá)。
(二)。問(wèn)題一:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn)。
請(qǐng)同學(xué)們用不等式或不等式組來(lái)表示出此問(wèn)題中的不等量的關(guān)系。
老師提示:借助于圖形,這個(gè)問(wèn)題是不是可以解決?
(下面讓學(xué)生板演,結(jié)合三角形草圖來(lái)表達(dá))
問(wèn)題(二):某種雜志原以每本2。5元的價(jià)格銷(xiāo)售,可以售出8萬(wàn)本,據(jù)市場(chǎng)調(diào)查,若單價(jià)每提高0。1元,銷(xiāo)售量就可能相應(yīng)減少20xx本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷(xiāo)售的總收入仍不低于20萬(wàn)元呢?
是不是還有其他的思路?
為什么可以這樣設(shè)?
很好,請(qǐng)繼續(xù)講。
這位學(xué)生回答的很好,表述得很準(zhǔn)確。請(qǐng)同學(xué)們對(duì)兩種解法作比較。
問(wèn)題(三):某鋼鐵廠要把長(zhǎng)度為4000mm的鋼管截成500mm和600mm兩種,按照生產(chǎn)的要求,600mm鋼管的數(shù)量不超過(guò)500mm鋼管的3倍。怎樣寫(xiě)出滿足上述所有不等式關(guān)系的不等式?
假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根。根據(jù)題意,應(yīng)當(dāng)有什么樣的不等量關(guān)系呢?
右邊的三個(gè)不等關(guān)系是“或”還是“且”的關(guān)系呢?
這位學(xué)生回答得很好,思維很?chē)?yán)密,那么該用怎樣的不等式組來(lái)表示此問(wèn)題中的不等關(guān)系呢?
通過(guò)上述三個(gè)問(wèn)題的探究,同學(xué)們對(duì)如何用不等式或不等式組把實(shí)際問(wèn)題中隱藏的不等量關(guān)系表示出來(lái),這一點(diǎn)掌握得很好。請(qǐng)同學(xué)們完成書(shū)本練習(xí)第74頁(yè)1,2。
課堂小結(jié):
1.學(xué)習(xí)數(shù)學(xué)可以幫助我們解決實(shí)際生活中的問(wèn)題。
2.數(shù)學(xué)和我們的生活聯(lián)系非常密切。
3.本節(jié)課鞏固了二元一次不等式及二元一次不等式組,并且能用它來(lái)解決現(xiàn)實(shí)生活中存在的大量不等量關(guān)系的實(shí)際問(wèn)題。還要注意思維要嚴(yán)密,規(guī)范,并且要注意數(shù)形結(jié)合等思想方法的綜合應(yīng)用。
布置作業(yè):
第75頁(yè)習(xí)題3.1 A組4,5。
29℃≤t≤35℃
x≥0
|AC|+|BC|>|AB|
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|
|AB|-|AC|
如果用表示速度,則v≤40km/h.
f≥2.5%或p≥2.3%
學(xué)生自己糾正了錯(cuò)誤:這種表達(dá)是錯(cuò)誤的,因?yàn)閮蓚€(gè)不等量關(guān)系要同時(shí)滿足,所以應(yīng)該用不等式組來(lái)表示次實(shí)際問(wèn)題中的不等量關(guān)系,即可以表示為也可表示為f≥2.5%且p≥2.3%.
過(guò)點(diǎn)A作AC⊥平面于點(diǎn)C,則d=|AC|≤|AB|
可設(shè)雜志的定價(jià)為x元,則銷(xiāo)售量就減少萬(wàn)本。銷(xiāo)售量變?yōu)?8-)萬(wàn)本,則總收入為(8-)x萬(wàn)元。即銷(xiāo)售的總收入為不低于20萬(wàn)元的不等式表示為(8-)x≥20.
解法二:可設(shè)雜志的單價(jià)提高了0.1n元,(n)
我只考慮單價(jià)的增量。
那么銷(xiāo)售量減少了0.2n萬(wàn)本,單價(jià)為(2.5+0.1n)元,則也可得銷(xiāo)售的總收入為不低于20萬(wàn)元的不等式,表示為(2.5+0.1n)(8-0.2n)≥20.
截得兩種鋼管的總長(zhǎng)度不能超過(guò)4000mm。
截得600mm鋼管的數(shù)量不能超過(guò)500mm鋼管的3倍。
截得兩種鋼管的數(shù)量都不能為負(fù)數(shù)。
它們是同時(shí)滿足條件,應(yīng)該是且的關(guān)系。由實(shí)際問(wèn)題的意義,還應(yīng)有x,y要同時(shí)滿足上述三個(gè)不等關(guān)系,可以用下面的不等式組來(lái)表示:
如果學(xué)生沒(méi)有想到的話,老師可以在黑板上板演示意圖,啟發(fā)學(xué)生考慮三邊的大小關(guān)系。
此時(shí)啟發(fā)學(xué)生“或”字可以嗎?學(xué)生沒(méi)有了聲音,他們?cè)谒伎贾?。到底行不行呢?有的回答“行”,有的回答“不行”?/p>
此時(shí)學(xué)生們?cè)谒伎迹瑫r(shí)間長(zhǎng)的話,老師要及時(shí)點(diǎn)撥。
讓學(xué)生知道,在解決問(wèn)題時(shí)應(yīng)該貫穿數(shù)形結(jié)合的思想,以形助數(shù),下面有學(xué)生的聲音,有學(xué)生在討論,有的學(xué)生還有疑問(wèn)。老師注意關(guān)注學(xué)生的思維狀況,并且及時(shí)的加以指導(dǎo)。
此時(shí)學(xué)生已經(jīng)真正進(jìn)入本節(jié)課的學(xué)習(xí)狀態(tài),老師再給出問(wèn)題(三)使學(xué)生一直處于跟隨老師積極思考和解決問(wèn)題的狀態(tài)。問(wèn)題是教學(xué)研究的核心,以問(wèn)題展示的形式來(lái)培養(yǎng)學(xué)生的問(wèn)題意識(shí)與探究意識(shí)。
【教學(xué)反思】(【設(shè)計(jì)說(shuō)明】)
本節(jié)課內(nèi)容很多,都是不等式和不等式組的有關(guān)問(wèn)題,還有很多是生活中的實(shí)例,學(xué)生學(xué)習(xí)起來(lái)很感興趣,課堂的氣氛也很好,大多數(shù)學(xué)生都能很積極地回答問(wèn)題,使課堂的學(xué)習(xí)氣氛很濃,確實(shí)也做到了愉快教學(xué)。設(shè)計(jì)是按照老師引導(dǎo)式教學(xué),邊講授邊引導(dǎo),啟發(fā)學(xué)習(xí)思考問(wèn)題及能自己解決問(wèn)題,鍛煉學(xué)習(xí)能自主的學(xué)習(xí)能力。
【交流評(píng)析】
一是課堂容量適中,二是實(shí)例很好,接近生活,學(xué)生感興趣。三是學(xué)生回答問(wèn)題積極踴躍,和老師配合很好。四是多媒體應(yīng)用的恰到好處,教學(xué)設(shè)備很完善,老師也能很熟練的應(yīng)用。
3.2均值不等式 教案(3)
(第三課時(shí))
教學(xué)目標(biāo):
了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用
教學(xué)重點(diǎn):
了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用
教學(xué)過(guò)程
例
1、已知a、b、c∈R,求證:
不等式的左邊是根式,而右邊是整式,應(yīng)設(shè)法通過(guò)適當(dāng)?shù)姆趴s變換將左邊各根式的被開(kāi)方式轉(zhuǎn)化為完全平方式,再利用不等式的性質(zhì)證得原命題.
a2b2c
2???a?b?c 例
2、若a,b,c?R,則bca?
本題若用“求差法”證明,計(jì)算量較大,難以獲得成功,注意到a , b , c∈R,從結(jié)論的特點(diǎn)出發(fā),均值不等式,問(wèn)題是不難獲證的.
+
例
3、已知a,b,c為兩兩不相等的實(shí)數(shù),求證:a?b?c?ab?bc?ca 證明:∵a?b?2abb?c?2bcc?a?2ca
以上三式相加:2(a?b?c)?2ab?2bc?2ca
∴a?b?c?ab?bc?ca
例
4、已知a,b,c,d都是正數(shù),求證:(ab?cd)(ac?bd)?4abcd 22222222222222
2分析:此題要求學(xué)生注意與均值不等式定理的“形”上發(fā)生聯(lián)系,從而正確運(yùn)用,同時(shí)證明:∵a,b,c,d都是正數(shù),∴ab>0,cd>0,ac>0,bd>得
ab?cdac?bd??0,??0.22
由不等式的性質(zhì)定理4的推論1,得
?(ab?cd)(ac?bd)?abcd.4即(ab?cd)(ac?bd)?4abcd
小結(jié):正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)
課堂練習(xí):第77頁(yè)練習(xí)A、B
課后作業(yè):略
教材分析:
上節(jié)課認(rèn)識(shí)了不等式,知道了什么叫不等式和不等式的解。本節(jié)主要學(xué)習(xí)不等式的解集,這是學(xué)好利用不等式解決實(shí)際問(wèn)題的關(guān)鍵,同時(shí)要求學(xué)生會(huì)用數(shù)軸表示不等式的解集,使學(xué)生感受到數(shù)形結(jié)合的作用。并且本課也通過(guò)讓學(xué)生經(jīng)歷實(shí)驗(yàn)、觀察、分析、概括過(guò)程,自主探索不等式的解集等概念,培學(xué)生的思維能力。在情感態(tài)度、價(jià)值觀方面要培養(yǎng)學(xué)生與他人合作學(xué)習(xí)的習(xí)慣。
教學(xué)重點(diǎn):
理解不等式的解集的含義,明確不等式的解是在某個(gè)范圍內(nèi)的所有解。
教學(xué)難點(diǎn):
對(duì)不等式的解集含義的理解。
教學(xué)難點(diǎn)突破辦法:
通過(guò)實(shí)驗(yàn)、觀察,分析、概括過(guò)程,使學(xué)生對(duì)不等式的解集有了初步的理解,然后通過(guò)數(shù)軸直觀地表示出不等式的解集,從而加深了學(xué)生對(duì)不等式的解集的理解。
教學(xué)方法:
1、采用復(fù)習(xí)法查缺補(bǔ)漏,引導(dǎo)發(fā)現(xiàn)法培養(yǎng)學(xué)生類(lèi)比推理能力,嘗試指導(dǎo)法逐步培養(yǎng)學(xué)生獨(dú)立思考能力及語(yǔ)言表達(dá)能力。充分發(fā)揮學(xué)生的主體作用,使學(xué)生在輕松愉快的氣氛中掌握知識(shí)。
2、讓學(xué)生充分發(fā)表自己的見(jiàn)解,給學(xué)生一定的時(shí)間和空間自主探究每一個(gè)問(wèn)題,而不是急于告訴學(xué)生結(jié)論。
3、尊重學(xué)生的個(gè)體差異,注意分層教學(xué),滿足學(xué)生多樣化的學(xué)習(xí)需要。
學(xué)習(xí)方法:
1、學(xué)生要深刻思考,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,養(yǎng)成認(rèn)真思考的好習(xí)慣。
2、合作類(lèi)推法:學(xué)習(xí)過(guò)程中學(xué)生共同討論,并用類(lèi)比推理的方法學(xué)習(xí)。
教學(xué)步驟設(shè)計(jì)如下:
(一)創(chuàng)設(shè)問(wèn)題情境,引入新課:
實(shí)驗(yàn):將如下重量的砝碼分別放入天平的左邊。
請(qǐng)大家仔細(xì)觀察,哪些砝碼放入天平左邊后能使天平向左邊傾斜?如果砝碼重x克,要使x+2>5,即:天平左邊放入x克砝碼后使天平向左邊傾斜。那么這樣的x取應(yīng)取什么數(shù)?這樣的數(shù)是有限個(gè)還是無(wú)限個(gè)?
學(xué)生活動(dòng):
1、讓學(xué)生觀察實(shí)驗(yàn),尋找數(shù)量關(guān)系回答問(wèn)題;
2、讓學(xué)生采取小組合作的學(xué)習(xí)方式。
(二)講授新課
通過(guò)實(shí)驗(yàn)、討論、交流、歸納得到:大于心不甘的每個(gè)數(shù)都是不等式x+2>5的解,而小于3的每一個(gè)數(shù)都不是不等式x+2>5的解,因此不等式x+2>5的解有無(wú)限多個(gè),它們組成集合,稱(chēng)為一元不等式x+2>5的解集。即表示為x>3。
由實(shí)例概括出不等式的解集以及解不等式的概念:一個(gè)不等式的所有解,組成這個(gè)不等式的解的集合,簡(jiǎn)稱(chēng)為這個(gè)不等式的解集;求不等式的解集過(guò)程,叫做解不等式。
我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集.一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x>3.那么如何在數(shù)軸上直觀地表示不等式x+2>5的解集x>3呢?
不等式解集x>3,在數(shù)軸上可以直觀地表示出來(lái)。如圖8.2.1
如果某個(gè)不等式x≤-2,也可在數(shù)軸上直觀地表示出來(lái),如圖8.2.2
說(shuō)明:8.2.1在表示范表演的點(diǎn)畫(huà)空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫(huà)黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)不向左拐。
(三)知識(shí)拓展
將數(shù)軸上x(chóng)的范圍用不等式來(lái)表示:
(四)嘗試反饋:
課本第44頁(yè)“練習(xí)”第1、2題。
(五)歸納小結(jié):
這節(jié)課主要學(xué)習(xí)了不等式的解集的有關(guān)概念,并會(huì)用數(shù)軸表示不等式的解集。
《不等式的基本性質(zhì)》它是北師大版八年級(jí)下冊(cè)第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過(guò)程這五個(gè)方面談?wù)勎覍?duì)這節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式,它是刻畫(huà)現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對(duì)不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時(shí),不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的內(nèi)容兼顧我校八年級(jí)學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):
知識(shí)與技能:
1. 感受生活中存在的不等關(guān)系,了解不等式的意義。
2. 掌握不等式的基本性質(zhì)。
過(guò)程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過(guò)程,初步體會(huì)不等式與等式的異同。
情感態(tài)度與價(jià)值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過(guò)程,進(jìn)一步符號(hào)感與數(shù)學(xué)化的能力。
教學(xué)重難點(diǎn):
重點(diǎn):不等式概念及其基本性質(zhì)
難點(diǎn):不等式基本性質(zhì)3
教法與學(xué)法:
1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”
2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
3. 教學(xué)手段:多媒體應(yīng)用教學(xué)
4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,教材和學(xué)生的特點(diǎn),我制定了以下四個(gè)教學(xué)環(huán)節(jié)。
下面我將具體的教學(xué)過(guò)程闡述一下:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
上課伊始,我將用一個(gè)公園買(mǎi)門(mén)票如何才劃算的例子導(dǎo)入課題。
世紀(jì)公園的票價(jià)是:每人5元;一次購(gòu)票滿30張,每張可少收1元。某班有27名團(tuán)員去世紀(jì)公園進(jìn)行活動(dòng)。當(dāng)領(lǐng)隊(duì)王小華準(zhǔn)備好了零錢(qián)到售票處買(mǎi)27張票時(shí),愛(ài)動(dòng)腦筋的李敏同學(xué)喊住了王小華,提議買(mǎi)30張票。但有的同學(xué)不明白,明明我們只有27個(gè)人,買(mǎi)30張票,豈不是“浪費(fèi)”嗎?
(此處學(xué)生是很容易得出買(mǎi)30張門(mén)票需要4X30=120(元), 買(mǎi)27張門(mén)票需要5X27=135(元),由于120〈135,所以買(mǎi)30張門(mén)票比買(mǎi)27張還要?jiǎng)澦?。由此建立了一個(gè)數(shù)與數(shù)之間的不等關(guān)系式)
緊接著進(jìn)一步提問(wèn):若人數(shù)是x時(shí),又當(dāng)如何買(mǎi)票劃算?
二、探求新知,講授新課
引例列出了數(shù)與數(shù)之間的不等關(guān)系和含有未知量120
接下來(lái)我用一組例題來(lái)鞏固一下對(duì)不等式概念的認(rèn)知,把表示不等量關(guān)系的常用關(guān)鍵詞提出。
(1)a是負(fù)數(shù);
(2)a是非負(fù)數(shù);
(3) a與b的和小于5;
(4) x與2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
關(guān)鍵詞:非負(fù)數(shù),非正數(shù),不大于,不小于,不超過(guò),至少
回到引入課題時(shí)的門(mén)票問(wèn)題120
難點(diǎn)突破:通過(guò)上面三組算式,學(xué)生已經(jīng)嘗試著歸納出不等式的三條基本性質(zhì)了。不等式性質(zhì)3是本節(jié)的難點(diǎn)。在不等式性質(zhì)3用數(shù)探討出以后,換一個(gè)角度讓學(xué)生想一想,是否能在數(shù)軸上任取兩個(gè)點(diǎn),用相反數(shù)的相關(guān)知識(shí)挖掘一下,乘以或除以一個(gè)負(fù)數(shù)時(shí),任意兩個(gè)數(shù)比較是否性質(zhì)3都成立。通過(guò)“數(shù)形結(jié)合”的思想,使數(shù)的取值從特殊化到一般化,從對(duì)具體數(shù)的感知完成到字母代替數(shù)的升華。讓學(xué)生用實(shí)例對(duì)一些數(shù)學(xué)猜想作出檢驗(yàn),從而增加猜想的可信程度。同時(shí),讓學(xué)生嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。
反饋練習(xí):用一個(gè)小練習(xí)鞏固三條性質(zhì)。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑問(wèn),我們討論性質(zhì)2,3是好象遺忘了一個(gè)數(shù)0。
引出讓學(xué)生歸納,等式與不等式的區(qū)別與聯(lián)系
三、拓展訓(xùn)練
根據(jù)不等式基本性質(zhì),將下列不等式化為“”的形式
(1)x-13
再次回到開(kāi)頭的門(mén)票問(wèn)題,讓學(xué)生解出相應(yīng)的x的取值范圍
四、小結(jié)
1.新知識(shí)
一個(gè)數(shù)學(xué)概念;兩種數(shù)學(xué)思想;三條基本性質(zhì)
2.與舊知識(shí)的聯(lián)系
等式性質(zhì)與不等式性質(zhì)的異同
五、作業(yè)的布置
以上是我對(duì)這節(jié)課的教學(xué)的看法,希望各位專(zhuān)家指正。謝謝!
“讓學(xué)生主動(dòng)參與數(shù)學(xué)教學(xué)的全過(guò)程,真正成為學(xué)習(xí)的主人”
教材分析
本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題,此時(shí)基本不等式是必不可缺的?;静坏仁皆谥R(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程。通過(guò)本節(jié)學(xué)習(xí)體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
課程目標(biāo)分析
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
教學(xué)重、難點(diǎn)分析
重點(diǎn):應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過(guò)程及應(yīng)用。
難點(diǎn):1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。
教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。以現(xiàn)代信息技術(shù)多媒體課件作為教學(xué)輔助手段,加深學(xué)生對(duì)基本不等式的理解。
教學(xué)準(zhǔn)備
多媒體課件、板書(shū)
教學(xué)過(guò)程
教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過(guò)程安排如下:
創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
二、抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問(wèn)]你能給出它的證明嗎?
學(xué)生在黑板上板書(shū)。
特別地,當(dāng)a>0,b>0時(shí),在不等式中,以、分別代替a、b,得到什么?
設(shè)計(jì)依據(jù):類(lèi)比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式不等式的來(lái)源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
答案:。
【歸納總結(jié)】
如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱(chēng)此不等式為基本不等式。其中稱(chēng)為a,b的算術(shù)平均數(shù),稱(chēng)為a,b的幾何平均數(shù)。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
[問(wèn)]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
喜歡《不等式課件》一文嗎?“幼兒教師教育網(wǎng)”希望帶您更加了解幼師資料,同時(shí),yjs21.com編輯還為您精選準(zhǔn)備了不等式課件專(zhuān)題,希望您能喜歡!
相關(guān)推薦
你近期在尋找優(yōu)質(zhì)的教學(xué)教案嗎?舉世不師,故道益離,給學(xué)生上課的時(shí)候,教案的作用性就顯現(xiàn)出來(lái)了。教案是教師保證教學(xué)成功的根本條件,請(qǐng)你閱讀幼兒教師教育網(wǎng)輯為你編輯整理的《一元二次不等式說(shuō)課稿》,供大家參考借鑒,希望可以幫助到有需要的朋友!...
摘要:媽媽很關(guān)心幼兒英語(yǔ)學(xué)習(xí),但是我想說(shuō),在0-6歲的階段,母語(yǔ)學(xué)習(xí)的重要性,一定大于英語(yǔ)學(xué)習(xí)。孩子長(zhǎng)大后,在同等師資條件下,母語(yǔ)越深的孩子,外語(yǔ)就越容易進(jìn)階。有的媽媽問(wèn),0-6歲的孩子,如何學(xué)英...
耐心不是與生俱來(lái)的,它需要培養(yǎng)。當(dāng)孩子很小的時(shí)候,他們很需要父母的幫助,他們迫不急待、著急都是可以理解的,他們以啼哭來(lái)表示想要的東西,也是很正常的,因?yàn)楹⒆拥谋憩F(xiàn)是真實(shí)需要的反應(yīng);但是當(dāng)孩子漸漸長(zhǎng)大后...
學(xué)會(huì)不同文檔的寫(xiě)作是一種重要的能力,我們都會(huì)尋找相關(guān)的范文寫(xiě)作套路。范文的整體構(gòu)架是一個(gè)重要借鑒點(diǎn),對(duì)于寫(xiě)范文,你有什么可分享的嗎?根據(jù)你的需要,幼兒教師教育網(wǎng)小編精心整理了幼兒園中班說(shuō)課稿一等獎(jiǎng),不妨參考一下。希望你喜歡!...
最新更新