幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

高三數(shù)學(xué)復(fù)習(xí)課件范例14篇

發(fā)布時間:2023-06-19

高三數(shù)學(xué)復(fù)習(xí)課件。

開學(xué)前,老師要認(rèn)真準(zhǔn)備教案和課件,每位老師都應(yīng)該精心設(shè)計(jì)教案課件,注重提高課堂互動和學(xué)生參與度。如果您想了解更多相關(guān)信息,我們強(qiáng)烈推薦您閱讀一下“高三數(shù)學(xué)復(fù)習(xí)課件”這篇文章,相信會對大家有所幫助!

高三數(shù)學(xué)復(fù)習(xí)課件(篇1)

考試要求 重難點(diǎn)擊 命題展望

1.理解復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件.

2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.

3.會進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.了解復(fù)數(shù)的代數(shù)形式的加、減運(yùn)算及其運(yùn)算的幾何意義.

4.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴(kuò)充的基本思想,體會理性思維在數(shù)系擴(kuò)充中的作用. 本章重點(diǎn):1.復(fù)數(shù)的有關(guān)概念;2.復(fù)數(shù)代數(shù)形式的四則運(yùn)算.

本章難點(diǎn):運(yùn)用復(fù)數(shù)的有關(guān)概念解題. 近幾年高考對復(fù)數(shù)的考查無論是試題的難度,還是試題在試卷中所占 比例都是呈下降趨勢,常以選擇題、填空題形式出現(xiàn),多為容易題.在復(fù)習(xí)過程中,應(yīng)將復(fù)數(shù)的概念及運(yùn)算放在首位.

知識網(wǎng)絡(luò)

15.1 復(fù)數(shù)的概念及其運(yùn)算

典例精析

題型一 復(fù)數(shù)的概念

【例1】 (1)如果復(fù)數(shù)(m2+i)(1+mi)是實(shí)數(shù),則實(shí)數(shù)m= ;

(2)在復(fù)平面內(nèi),復(fù)數(shù)1+ii對應(yīng)的點(diǎn)位于第 象限;

(3)復(fù)數(shù)z=3i+1的共軛復(fù)數(shù)為z= .

【解 析】 (1)(m2+i)(1+mi)=m2-m+(1+m3)i是實(shí)數(shù)1+m3=0m=-1.

(2)因?yàn)?+ii=i(1+i)i2=1-i,所以在復(fù)平面內(nèi)對 應(yīng)的點(diǎn)為(1,-1),位于第四象限.

(3)因?yàn)閦=1+3i,所以z=1-3i.

【點(diǎn)撥】 運(yùn)算此類 題目需注意復(fù)數(shù)的代數(shù)形式z=a+bi(a,bR),并注意復(fù)數(shù)分為實(shí)數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)的幾何意義,共軛復(fù)數(shù)等概念.

【變式訓(xùn)練1】(1)如果z=1-ai1+ai為純虛數(shù),則實(shí)數(shù)a等于()

A.0 B.-1 C.1 D.-1或1

(2)在復(fù)平面內(nèi),復(fù)數(shù)z=1-ii(i是虛數(shù)單位)對應(yīng)的點(diǎn)位于()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

【解析】(1)設(shè)z=xi,x0,則

xi=1-ai1+ai1+ax-(a+x)i=0 或 故選D.

(2)z=1-ii=(1-i)(-i)=-1-i,該復(fù)數(shù)對應(yīng)的點(diǎn)位于第三象限.故選C.

題型二 復(fù)數(shù)的相等

【例2】(1)已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足zz0=3z+z0,則復(fù)數(shù)z= ;

(2)已知m1+i=1-ni, 其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni= ;

(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實(shí)根,則這個實(shí)根為 ,實(shí)數(shù)k的值為.

【解析】(1)設(shè)z=x+yi(x,yR),又z0=3+2i,

代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,

整理得 (2y+3)+(2-2x)i=0,

則由復(fù)數(shù)相等的條件得

解得 所以z=1- .

(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.

則由復(fù)數(shù)相等的條件得

所以m+ni=2+i.

(3)設(shè)x=x0是方程的實(shí)根, 代入方程并整理得

由復(fù)數(shù)相等的充要條件得

解得 或

所以方程的實(shí)根為x=2或x= -2,

相應(yīng)的k值為k=-22或k=22.

【點(diǎn)撥】復(fù)數(shù)相等須先化為z=a+bi(a,bR)的形式,再由相等 得實(shí)部與實(shí)部相等、虛部與虛部相等.

【變式訓(xùn)練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()

A.-12 B.-2 C.2 D.12

(2)若(a-2i)i=b+i,其中a,bR,i為虛數(shù)單位,則a+b=.

【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)= 3+i2,于是a+b=32+12=2.

(2)3.2+ai=b+ia=1,b= 2.

題 型三 復(fù)數(shù)的運(yùn)算

【例3】 (1)若復(fù)數(shù)z=-12+32i, 則1+z+z2+z3++z2 008= ;

(2)設(shè)復(fù)數(shù)z滿足z+|z|=2+i,那么z= .

【解析】 (1)由已知得z2=-12-32i,z3=1,z4=-12+32i =z.

所以zn具有周期性,在一個周期內(nèi)的和為0,且周期為3.

所以1+z+z2+z3++z2 008

=1+z+(z2+z3+z4)++(z2 006+z2 007+z2 008)

=1+z=12+32i.

(2)設(shè)z=x+yi(x,yR),則x+yi+x2+y2=2+i,

所以 解得 所以z= +i.

【點(diǎn)撥】 解(1)時要注意x3=1(x-1)(x2+x+1)=0的三個根為1,,-,

其中=-12+32i,-=-12-32i, 則

1++2=0, 1+-+-2=0 ,3=1,-3=1,-=1,2=-,-2=.

解(2)時要注意|z|R,所以須令z=x +yi.

【變式訓(xùn)練3】(1)復(fù)數(shù)11+i+i2等于()

A.1+i2 B.1-i2 C.-12 D.12

(2)(20xx江西鷹潭)已知復(fù)數(shù)z=23-i1+23i+(21-i)2 010,則復(fù)數(shù)z等于()

A.0 B.2 C.-2i D.2i

【解析】(1 )D.計(jì)算容易有11+i+i2=12.

(2)A.

總結(jié)提高

復(fù)數(shù)的代數(shù)運(yùn)算是重點(diǎn),是每年必考內(nèi)容之一,復(fù)數(shù)代數(shù)形式的運(yùn)算:①加減法按合并同類項(xiàng)法則進(jìn)行;②乘法展開、除法須分母實(shí)數(shù)化.因此,一些復(fù)數(shù)問題只需設(shè)z=a+bi(a,bR)代入原式后,就 可以將復(fù)數(shù)問題化歸為實(shí)數(shù)問題來解決.

高三數(shù)學(xué)復(fù)習(xí)課件(篇2)

一、教學(xué)內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念。掌握好本節(jié)課的知識,對學(xué)生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

二、教學(xué)目標(biāo)設(shè)計(jì)

理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問題。

三、教學(xué)重點(diǎn)及難點(diǎn)

二面角的平面角的概念的形成以及二面角的平面角的作法。

四、教學(xué)流程設(shè)計(jì)

五、教學(xué)過程設(shè)計(jì)

一、 新課引入

1。復(fù)習(xí)和回顧平面角的有關(guān)知識。

平面中的角

定義 從一個頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角

圖形

結(jié)構(gòu) 射線點(diǎn)射線

表示法 AOB,O等

2。復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉(zhuǎn)化為平面角)

3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角。在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實(shí)例?(如圖1,課本的開合、門或窗的開關(guān)。)從而,引出二面角的定義及相關(guān)內(nèi)容。

二、學(xué)習(xí)新課

(一)二面角的定義

平面中的角 二面角

定義 從一個頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角 課本P17

圖形

結(jié)構(gòu) 射線點(diǎn)射線 半平面直線半平面

表示法 AOB,O等 二面角a或—AB—

(二)二面角的圖示

1。畫出直立式、平臥式二面角各一個,并分別給予表示。

2。在正方體中認(rèn)識二面角。

(三)二面角的平面角

平面幾何中的角可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1。二面角的平面角的定義(課本P17)。

2。AOB的大小與點(diǎn)O在棱上的位置無關(guān)。

[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題。

②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。

③二面角的平面角的三個主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直。

3。二面角的平面角的范圍:

(四)例題分析

例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點(diǎn)間的距離。

[說明] ①檢查學(xué)生對二面角的平面角的定義的掌握情況。

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?

例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角 的大小。

[說明] ①求二面角的步驟:作證算答。

②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法)。

例3 已知正方體 ,求二面角 的大小。(課本P18例1)

[說明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法。

(五)問題拓展

例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

[說明]使學(xué)生明白數(shù)學(xué)既來源于實(shí)際又服務(wù)于實(shí)際。

三、鞏固練習(xí)

1。在棱長為1的正方體 中,求二面角 的大小。

2。 若二面角 的大小為 ,P在平面 上,點(diǎn)P到 的距離為h,求點(diǎn)P到棱l的距離。

四、課堂小結(jié)

1。二面角的定義

2。二面角的平面角的定義及其范圍

3。二面角的平面角的常用作圖方法

4。求二面角的大?。ㄗ髯C算答)

五、作業(yè)布置

1。課本P18練習(xí)14。4(1)

2。在 二面角的一個面內(nèi)有一個點(diǎn),它到另一個面的距離是10,求它到棱的距離。

3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成 的二面角,求A、C兩點(diǎn)的距離。

六、教學(xué)設(shè)計(jì)說明

本節(jié)課的設(shè)計(jì)不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實(shí)出發(fā),調(diào)動學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運(yùn)用了類比的手段和方法。教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強(qiáng)了知識形成過程的教學(xué)。

高三數(shù)學(xué)復(fù)習(xí)課件(篇3)

1.如圖,已知直線L: 的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線 上的射影依次為點(diǎn)D、E。

(1)若拋物線 的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;

(2)(理)連接AE、BD,試探索當(dāng)m變化時,直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出N點(diǎn)的坐標(biāo),并給予證明;否則說明理由。

(文)若 為x軸上一點(diǎn),求證:

2.如圖所示,已知圓 定點(diǎn)A(1,0),M為圓上一動點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足 ,點(diǎn)N的軌跡為曲線E。

(1)求曲線E的方程;

(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足 的取值范圍。

3.設(shè)橢圓C: 的左焦點(diǎn)為F,上頂點(diǎn)為A,過點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q, 且

⑴求橢圓C的離心率;

⑵若過A、Q、F三點(diǎn)的圓恰好與直線

l: 相切,求橢圓C的方程.

4.設(shè)橢圓 的離心率為e=

(1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.

(2)求b為何值時,過圓x2+y2=t2上一點(diǎn)M(2, )處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1OQ2.

5.已知曲線 上任意一點(diǎn)P到兩個定點(diǎn)F1(- ,0)和F2( ,0)的距離之和為4.

(1)求曲線 的方程;

(2)設(shè)過(0,-2)的直線 與曲線 交于C、D兩點(diǎn),且 為坐標(biāo)原點(diǎn)),求直線 的方程.

6.已知橢圓 的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B.過F、B、C作⊙P,其中圓心P的坐標(biāo)為(m,n).

(Ⅰ)當(dāng)m+n0時,求橢圓離心率的范圍;

(Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.

7.有如下結(jié)論:圓 上一點(diǎn) 處的切線方程為 ,類比也有結(jié)論:橢圓 處的切線方程為 ,過橢圓C: 的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.

(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時,求△ABM的面積

8.已知點(diǎn)P(4,4),圓C: 與橢圓E: 有一個公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;

(Ⅱ)設(shè)Q為橢圓E上的一個動點(diǎn),求 的取值范圍.

9.橢圓的對稱中心在坐標(biāo)原點(diǎn),一個頂點(diǎn)為 ,右焦點(diǎn) 與點(diǎn) 的距離為 。

(1)求橢圓的方程;

(2)是否存在斜率 的直線 : ,使直線 與橢圓相交于不同的兩點(diǎn) 滿足 ,若存在,求直線 的傾斜角 ;若不存在,說明理由。

10.橢圓方程為 的一個頂點(diǎn)為 ,離心率 。

(1)求橢圓的方程;

(2)直線 : 與橢圓相交于不同的兩點(diǎn) 滿足 ,求 。

11.已知橢圓 的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C上頂點(diǎn)為B,過F,B,C三點(diǎn)作 ,其中圓心P的坐標(biāo)為 .

(1) 若橢圓的離心率 ,求 的方程;

(2)若 的圓心在直線 上,求橢圓的方程.

12.已知直線 與曲線 交于不同的兩點(diǎn) , 為坐標(biāo)原點(diǎn).

(Ⅰ)若 ,求證:曲線 是一個圓;

(Ⅱ)若 ,當(dāng) 且 時,求曲線 的離心率 的取值范圍.

13.設(shè)橢圓 的左、右焦點(diǎn)分別為 、 ,A是橢圓C上的一點(diǎn),且 ,坐標(biāo)原點(diǎn)O到直線 的距離為 .

(1)求橢圓C的方程;

(2)設(shè)Q是橢圓C上的一點(diǎn),過Q的直線l交x軸于點(diǎn) ,較y軸于點(diǎn)M,若 ,求直線l的方程.

14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過其上一點(diǎn) 的切線方程為 為常數(shù)).

(I)求拋物線方程;

(II)斜率為 的直線PA與拋物線的另一交點(diǎn)為A,斜率為 的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足 ,求證線段PM的中點(diǎn)在y軸上;

(III)在(II)的條件下,當(dāng) 時,若P的坐標(biāo)為(1,-1),求PAB為鈍角時點(diǎn)A的縱坐標(biāo)的取值范圍.

15.已知動點(diǎn)A、B分別在x軸、y軸上,且滿足|AB|=2,點(diǎn)P在線段AB上,且

設(shè)點(diǎn)P的軌跡方程為c。

(1)求點(diǎn)P的軌跡方程C;

(2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對稱的兩個動點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q

坐標(biāo)為 求△QMN的面積S的最大值。

16.設(shè) 上的兩點(diǎn),

已知 , ,若 且橢圓的離心率 短軸長為2, 為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由

17.如圖,F(xiàn)是橢圓 (a0)的一個焦點(diǎn),A,B是橢圓的兩個頂點(diǎn),橢圓的離心率為 .點(diǎn)C在x軸上,BCBF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1: 相切.

(Ⅰ)求橢圓的方程:

(Ⅱ)過點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且 ,求直線l2的方程.

18.如圖,橢圓長軸端點(diǎn)為 , 為橢圓中心, 為橢圓的右焦點(diǎn),且 .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)記橢圓的上頂點(diǎn)為 ,直線 交橢圓于 兩點(diǎn),問:是否存在直線 ,使點(diǎn) 恰為 的垂心?若存在,求出直線 的方程;若不存在,請說明理由.

19.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在 軸上,離心率為 ,且經(jīng)過點(diǎn) . 直線 交橢圓于 兩不同的點(diǎn).

20.設(shè) ,點(diǎn) 在 軸上,點(diǎn) 在 軸上,且

(1)當(dāng)點(diǎn) 在 軸上運(yùn)動時,求點(diǎn) 的軌跡 的方程;

(2)設(shè) 是曲線 上的點(diǎn),且 成等差數(shù)列,當(dāng) 的垂直平分線與 軸交于點(diǎn) 時,求 點(diǎn)坐標(biāo).

21.已知點(diǎn) 是平面上一動點(diǎn),且滿足

(1)求點(diǎn) 的軌跡 對應(yīng)的方程;

(2)已知點(diǎn) 在曲線 上,過點(diǎn) 作曲線 的兩條弦 和 ,且 ,判斷:直線 是否過定點(diǎn)?試證明你的結(jié)論.

22.已知橢圓 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過 、 、 三點(diǎn).

(1)求橢圓 的方程:

(2)若點(diǎn)D為橢圓 上不同于 、 的任意一點(diǎn), ,當(dāng) 內(nèi)切圓的面積最大時。求內(nèi)切圓圓心的坐標(biāo);

(3)若直線 與橢圓 交于 、 兩點(diǎn),證明直線 與直線 的交點(diǎn)在直線 上.

23.過直角坐標(biāo)平面 中的拋物線 的焦點(diǎn) 作一條傾斜角為 的直線與拋物線相交于A,B兩點(diǎn)。

(1)用 表示A,B之間的距離;

(2)證明: 的大小是與 無關(guān)的定值,

并求出這個值。

24.設(shè) 分別是橢圓C: 的左右焦點(diǎn)

(1)設(shè)橢圓C上的點(diǎn) 到 兩點(diǎn)距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo)

(2)設(shè)K是(1)中所得橢圓上的動點(diǎn),求線段 的中點(diǎn)B的軌跡方程

(3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM ,PN的斜率都存在,并記為 試探究 的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論。

25.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長為半徑的圓相切.

(I)求橢圓 的方程;

(II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過點(diǎn) 且垂直于橢圓的長軸,動直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;

(III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.

26.如圖所示,已知橢圓 : , 、 為

其左、右焦點(diǎn), 為右頂點(diǎn), 為左準(zhǔn)線,過 的直線 : 與橢圓相交于 、

兩點(diǎn),且有: ( 為橢圓的半焦距)

(1)求橢圓 的離心率 的最小值;

(2)若 ,求實(shí)數(shù) 的取值范圍;

(3)若 , ,

求證: 、 兩點(diǎn)的縱坐標(biāo)之積為定值;

27.已知橢圓 的左焦點(diǎn)為 ,左右頂點(diǎn)分別為 ,上頂點(diǎn)為 ,過 三點(diǎn)作圓 ,其中圓心 的坐標(biāo)為

(1)當(dāng) 時,橢圓的離心率的取值范圍

(2)直線 能否和圓 相切?證明你的結(jié)論

28.已知點(diǎn)A(-1,0),B(1,-1)和拋物線. ,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.

(I)證明: 為定值;

(II)若△POM的面積為 ,求向量 與 的夾角;

(Ⅲ) 證明直線PQ恒過一個定點(diǎn).

29.已知橢圓C: 上動點(diǎn) 到定點(diǎn) ,其中 的距離 的最小值為1.

(1)請確定M點(diǎn)的坐標(biāo)

(2)試問是否存在經(jīng)過M點(diǎn)的直線 ,使 與橢圓C的兩個交點(diǎn)A、B滿足條件 (O為原點(diǎn)),若存在,求出 的方程,若不存在請說是理由。

30.已知橢圓 ,直線 與橢圓相交于 兩點(diǎn).

(Ⅰ)若線段 中點(diǎn)的橫坐標(biāo)是 ,求直線 的方程;

(Ⅱ)在 軸上是否存在點(diǎn) ,使 的值與 無關(guān)?若存在,求出 的值;若不存在,請說明理由.

31.直線AB過拋物線 的焦點(diǎn)F,并與其相交于A、B兩點(diǎn)。Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn).

(I)求 的取值范圍;

(Ⅱ)過 A、B兩點(diǎn)分剮作此撒物線的切線,兩切線相交于N點(diǎn).求證: ∥ ;

(Ⅲ) 若P是不為1的正整數(shù),當(dāng) ,△ABN的面積的取值范圍為 時,求該拋物線的方程.

32.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個交點(diǎn)為 .

(Ⅰ)當(dāng) 時,求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點(diǎn) ,與拋物線 交于 、 ,如果以線段 為直徑作圓,試判斷點(diǎn) 與圓的位置關(guān)系,并說明理由;

(Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請說明理由.

33.已知點(diǎn) 和動點(diǎn) 滿足: ,且存在正常數(shù) ,使得 。

(1)求動點(diǎn)P的軌跡C的方程。

(2)設(shè)直線 與曲線C相交于兩點(diǎn)E,F(xiàn),且與y軸的交點(diǎn)為D。若 求 的值。

34.已知橢圓 的右準(zhǔn)線 與 軸相交于點(diǎn) ,右焦點(diǎn) 到上頂點(diǎn)的距離為 ,點(diǎn) 是線段 上的一個動點(diǎn).

(I)求橢圓的方程;

(Ⅱ)是否存在過點(diǎn) 且與 軸不垂直的直線 與橢圓交于 、 兩點(diǎn),使得 ,并說明理由.

35.已知橢圓C: ( .

(1)若橢圓的長軸長為4,離心率為 ,求橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,設(shè)過定點(diǎn) 的直線 與橢圓C交于不同的兩點(diǎn) ,且 為銳角(其中 為坐標(biāo)原點(diǎn)),求直線 的斜率k的取值范圍;

(3)如圖,過原點(diǎn) 任意作兩條互相垂直的直線與橢圓 ( )相交于 四點(diǎn),設(shè)原點(diǎn) 到四邊形 一邊的距離為 ,試求 時 滿足的條件.

36.已知 若過定點(diǎn) 、以 ( )為法向量的直線 與過點(diǎn) 以 為法向量的直線 相交于動點(diǎn) .

(1)求直線 和 的方程;

(2)求直線 和 的斜率之積 的值,并證明必存在兩個定點(diǎn) 使得 恒為定值;

(3)在(2)的條件下,若 是 上的兩個動點(diǎn),且 ,試問當(dāng) 取最小值時,向量 與 是否平行,并說明理由。

37.已知點(diǎn) ,點(diǎn) (其中 ),直線 、 都是圓 的切線.

(Ⅰ)若 面積等于6,求過點(diǎn) 的拋物線 的方程;

(Ⅱ)若點(diǎn) 在 軸右邊,求 面積的最小值.

38.我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進(jìn)行研究并完成下面問題。

(1)設(shè)F1、F2是橢圓 的兩個焦點(diǎn),點(diǎn)F1、F2到直線 的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關(guān)系。

(2)設(shè)F1、F2是橢圓 的兩個焦點(diǎn),點(diǎn)F1、F2到直線

(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。

(3)試寫出一個能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

(4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

39.已知點(diǎn) 為拋物線 的焦點(diǎn),點(diǎn) 是準(zhǔn)線 上的動點(diǎn),直線 交拋物線 于 兩點(diǎn),若點(diǎn) 的縱坐標(biāo)為 ,點(diǎn) 為準(zhǔn)線 與 軸的交點(diǎn).

(Ⅰ)求直線 的方程;(Ⅱ)求 的面積 范圍;

(Ⅲ)設(shè) , ,求證 為定值.

40.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長為半徑的圓相切.

(I)求橢圓 的方程;

(II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過點(diǎn) 且垂直于橢圓的長軸,動直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;

(III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.

41.已知以向量 為方向向量的直線 過點(diǎn) ,拋物線 : 的頂點(diǎn)關(guān)于直線 的對稱點(diǎn)在該拋物線的準(zhǔn)線上.

(1)求拋物線 的方程;

(2)設(shè) 、 是拋物線 上的兩個動點(diǎn),過 作平行于 軸的直線 ,直線 與直線 交于點(diǎn) ,若 ( 為坐標(biāo)原點(diǎn), 、 異于點(diǎn) ),試求點(diǎn) 的軌跡方程。

42.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個交點(diǎn)為 .

(Ⅰ)當(dāng) 時,求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點(diǎn) ,

與拋物線 交于 、 ,如果以線段 為直徑作圓,

試判斷點(diǎn) 與圓的位置關(guān)系,并說明理由;

(Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請說明理由.

43.設(shè)橢圓 的一個頂點(diǎn)與拋物線 的焦點(diǎn)重合, 分別是橢圓的左、右焦點(diǎn),且離心率 且過橢圓右焦點(diǎn) 的直線 與橢圓C交于 兩點(diǎn).

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在直線 ,使得 .若存在,求出直線 的方程;若不存在,說明理由.

(Ⅲ)若AB是橢圓C經(jīng)過原點(diǎn)O的弦, MN AB,求證: 為定值.

44.設(shè) 是拋物線 的焦點(diǎn),過點(diǎn)M(-1,0)且以 為方向向量的直線順次交拋物線于 兩點(diǎn)。

(Ⅰ)當(dāng) 時,若 與 的夾角為 ,求拋物線的方程;

(Ⅱ)若點(diǎn) 滿足 ,證明 為定值,并求此時△ 的面積

45.已知點(diǎn) ,點(diǎn) 在 軸上,點(diǎn) 在 軸的正半軸上,點(diǎn) 在直線 上,且滿足 .

(Ⅰ)當(dāng)點(diǎn) 在 軸上移動時,求點(diǎn) 的軌跡 的方程;

(Ⅱ)設(shè) 、 為軌跡 上兩點(diǎn),且 0, ,求實(shí)數(shù) ,

使 ,且 .

46.已知橢圓 的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C 上任一點(diǎn),MN是圓 的一條直徑,若與AF平行且在y軸上的截距為 的直線 恰好與圓 相切。

(1)已知橢圓 的離心率;

(2)若 的最大值為49,求橢圓C 的方程.

高三數(shù)學(xué)復(fù)習(xí)課件(篇4)

導(dǎo)數(shù)及其四則運(yùn)算

一、考試要求:(1)導(dǎo)數(shù)概念及其幾何意義①了解導(dǎo)數(shù)概念的實(shí)際背景②理解導(dǎo)數(shù)的幾何意義.(2)導(dǎo)數(shù)的運(yùn)算①能根據(jù)導(dǎo)數(shù)定義,求函數(shù)的導(dǎo)數(shù).②能利用下面給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如的復(fù)合函數(shù))的導(dǎo)數(shù).

二、知識梳理:

1、如果當(dāng)時,有極限,就說函數(shù)在點(diǎn)處可導(dǎo),并把這個極限叫做在點(diǎn)處的導(dǎo)數(shù)(或變化率)。記作或,即。的幾何意義是曲線在點(diǎn)處的切線;瞬時速度就是位移函數(shù)對時間的導(dǎo)數(shù)。

6、點(diǎn)是曲線上任意一點(diǎn),則到直線的距離的最小值是;

7、若函數(shù)的圖像與直線只有一個公共點(diǎn),則實(shí)數(shù)的取值范圍是

8、若點(diǎn)在曲線上移動,則過點(diǎn)的切線的傾斜角取值范圍是

9、設(shè)函數(shù)(1)證明:的導(dǎo)數(shù);

(2)若對所有都有,求的取值范圍。

10、已知在區(qū)間

高三數(shù)學(xué)復(fù)習(xí)課件(篇5)

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

教學(xué)重難點(diǎn)

解三角形及應(yīng)用舉例

教學(xué)過程

一.基礎(chǔ)知識精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

二.問題討論

思維點(diǎn)撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).

例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺

風(fēng)中心位于城市O(如圖)的東偏南方向

300km的海面P處,并以20km/h的速度向西偏北的

方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,

并以10km/h的速度不斷增加,問幾小時后該城市開始受到

臺風(fēng)的侵襲。

一.小結(jié):

1.利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問題常用的手段.

三.作業(yè):P80闖關(guān)訓(xùn)練

高三數(shù)學(xué)復(fù)習(xí)課件(篇6)

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。

教學(xué)重難點(diǎn)

掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。XX

教學(xué)過程

等比數(shù)列性質(zhì)請同學(xué)們類比得出。

【方法規(guī)律】

1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個實(shí)數(shù)

a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項(xiàng)和的(?。┲禃r,常用函數(shù)的思想和方法加以解決。

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。

(2)一個等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=。

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個數(shù)。

例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。

高三數(shù)學(xué)復(fù)習(xí)課件(篇7)

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

數(shù)列求和的綜合應(yīng)用

教學(xué)重難點(diǎn)

數(shù)列求和的綜合應(yīng)用

教學(xué)過程

典例分析

3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

(1)求{an}的通項(xiàng)公式

(2)求{|an|}的前n項(xiàng)和Tn

4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

5.已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項(xiàng)為的等差數(shù)列,則|m-n|=

6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

(1)求{an}的通項(xiàng)公式

(2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式

7.四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個數(shù)

8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時,Sn有值,并求出它的值

.已知數(shù)列{an},an∈NXX,Sn=(an+2)2

(1)求證{an}是等差數(shù)列

(2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值

0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈NXX)

(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

11.購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

12.某商品在最近100天內(nèi)的價格f(t)與時間t的

函數(shù)關(guān)系式是f(t)=

銷售量g(t)與時間t的函數(shù)關(guān)系是

g(t)=-t/3+109/3(0≤t≤100)

求這種商品的日銷售額的值

注:對于分段函數(shù)型的應(yīng)用題,應(yīng)注意對變量x的取值區(qū)間的討論;求函數(shù)的值,應(yīng)分別求出函數(shù)在各段中的值,通過比較,確定值

高三數(shù)學(xué)復(fù)習(xí)課件(篇8)

本文題目:高三數(shù)學(xué)復(fù)習(xí)教案:古典概型復(fù)習(xí)教案

【高考要求】古典概型(B); 互斥事件及其發(fā)生的概率(A)

【學(xué)習(xí)目標(biāo)】:1、了解概率的頻率定義,知道隨機(jī)事件的發(fā)生是隨機(jī)性與規(guī)律性的統(tǒng)一;

2、 理解古典概型的特點(diǎn),會解較簡單的古典概型問題;

3、 了解互斥事件與對立事件的概率公式,并能運(yùn)用于簡單的概率計(jì)算.

【知識復(fù)習(xí)與自學(xué)質(zhì)疑】

1、古典概型是一種理想化的概率模型,假設(shè)試驗(yàn)的結(jié)果數(shù)具有 性和 性.解古典概型問題關(guān)鍵是判斷和計(jì)數(shù),要掌握簡單的記數(shù)方法(主要是列舉法).借助于互斥、對立關(guān)系將事件分解或轉(zhuǎn)化是很重要的方法.

2、(A)在10件同類產(chǎn)品中,其中8件為正品,2件為次品。從中任意抽出3件,則下列4個事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .

3、(A)從5個紅球,1個黃球中隨機(jī)取出2個,所取出的兩個球顏色不同的概率是 。

4、(A)同時拋兩個各面上分別標(biāo)有1、2、3、4、5、6均勻的正方體玩具一次,向上的兩個數(shù)字之和為3的概率是 .

5、(A)某人射擊5槍,命中3槍,三槍中恰好有2槍連中的概率是 .

6、(B)若實(shí)數(shù) ,則曲線 表示焦點(diǎn)在y軸上的雙曲線的概率是 .

【例題精講】

1、(A)甲、乙兩人參加知識競答,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人依次各抽一題.(1)甲抽到選擇題、乙抽到判斷題的概率是多少?

(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

2、(B)黃種人群中各種血型的人所占的比例如下表所示:

血型 A B AB O

該血型的人所占的比(%) 28 29 8 35

已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:

(1) 任找一個人,其血可以輸給小明的概率是多少?

(2) 任找一個人,其血不能輸給小明的概率是多少?

3、(B)將兩粒骰子投擲兩次,求:(1)向上的點(diǎn)數(shù)之和是8的概率;(2)向上的點(diǎn)數(shù)之和不小于8 的概率;(3)向上的點(diǎn)數(shù)之和不超過10的概率.

4、(B)將一個各面上均涂有顏色的正方體鋸成 (n個同樣大小的正方體,從這些小正方體中任取一個,求下列事件的概率:(1)三面涂有顏色;(2)恰有兩面涂有顏色;

(3)恰有一面涂有顏色;(4)至少有一面涂有顏色.

【矯正反饋】

1、(A)一個三位數(shù)的密碼鎖,每位上的數(shù)字都可在0到10這十個數(shù)字中任選,某人忘記了密碼最后一個號碼,開鎖時在對好前兩位號碼后,隨意撥動最后一個數(shù)字恰好能開鎖的概率是 .

2、(A)第1、2、5、7路公共汽車都要??康囊粋€車站,有一位乘客等候著1路或5路汽車,假定各路汽車首先到站的可能性相等,那么首先到站的正好是這位乘客所要乘的的車的概率是 .

3、(A)某射擊運(yùn)動員在打靶中,連續(xù)射擊3次,事件至少有兩次中靶的對立事件是 .

4、(B)某產(chǎn)品分甲、乙、丙三級,其中乙、丙兩級均屬次品,在正常生產(chǎn)情況下出現(xiàn)乙級品和丙級品的概率分別為3%和1%,求抽驗(yàn)一只是正品(甲級)的概率 .

5、(B)袋中裝有4只白球和2只黑球,從中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【遷移應(yīng)用】

1、(A)將一粒骰子連續(xù)拋擲三次,它落地時向上的點(diǎn)數(shù)依次成等差數(shù)列的概率是 .

2、(A)從魚塘中打一網(wǎng)魚,共M條,做上標(biāo)記后放回池塘中,過了幾天,又打上來一網(wǎng)魚,共N條,其中K條有標(biāo)記,估計(jì)池塘中魚的條數(shù)為 .

3、(A)從分別寫有A,B,C,D,E的5張卡片中,任取2張,這兩張上的字母恰好按字母順序相鄰的概率是 .

4、(B)電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數(shù)字組成,則一天中任一時刻的四個數(shù)字之和為23的概率是 .

5、(B)將甲、乙兩粒骰子先后各拋一次,a,b分別表示拋擲甲、乙兩粒骰子所出現(xiàn)的點(diǎn)數(shù).

(1)若點(diǎn)P(a,b)落在不等式組 表示的平面區(qū)域記為A,求事件A的概率;

(2)求P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率最大,求m的值.

高三數(shù)學(xué)復(fù)習(xí)課件(篇9)

●知識梳理

函數(shù)的綜合應(yīng)用主要體現(xiàn)在以下幾方面:

1.函數(shù)內(nèi)容本身的相互綜合,如函數(shù)概念、性質(zhì)、圖象等方面知識的綜合.

2.函數(shù)與其他數(shù)學(xué)知識點(diǎn)的綜合,如方程、不等式、數(shù)列、解析幾何等方面的內(nèi)容與函數(shù)的綜合.這是高考主要考查的內(nèi)容.

3.函數(shù)與實(shí)際應(yīng)用問題的綜合.

●點(diǎn)擊雙基

1.已知函數(shù)f(x)=lg(2x-b)(b為常數(shù)),若x[1,+)時,f(x)0恒成立,則

A.b1 B.b1 C.b1 D.b=1

解析:當(dāng)x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調(diào)增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數(shù),且f(x)的圖象經(jīng)過點(diǎn)A(0,3)和B(3,-1),則不等式|f(x+1)-1|2的解集是___________________.

解析:由|f(x+1)-1|2得-2

又f(x)是R上的減函數(shù),且f(x)的圖象過點(diǎn)A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】 取第一象限內(nèi)的點(diǎn)P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數(shù)列,1,y1,y2,2依次成等比數(shù)列,則點(diǎn)P1、P2與射線l:y=x(x0)的關(guān)系為

A.點(diǎn)P1、P2都在l的上方 B.點(diǎn)P1、P2都在l上

C.點(diǎn)P1在l的下方,P2在l的上方 D.點(diǎn)P1、P2都在l的下方

剖析:x1= +1= ,x2=1+ = ,y1=1 = ,y2= ,∵y1

P1、P2都在l的下方.

答案:D

【例2】 已知f(x)是R上的偶函數(shù),且f(2)=0,g(x)是R上的奇函數(shù),且對于xR,都有g(shù)(x)=f(x-1),求f(20xx)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數(shù),其周期T=4.

f(20xx)=f(4500+2)=f(2)=0.

評述:應(yīng)靈活掌握和運(yùn)用函數(shù)的奇偶性、周期性等性質(zhì).

【例3】 函數(shù)f(x)= (m0),x1、x2R,當(dāng)x1+x2=1時,f(x1)+f(x2)= .

(1)求m的值;

(2)數(shù)列{an},已知an=f(0)+f( )+f( )++f( )+f(1),求an.

解:(1)由f(x1)+f(x2)= ,得 + = ,

4 +4 +2m= [4 +m(4 +4 )+m2].

∵x1+x2=1,(2-m)(4 +4 )=(m-2)2.

4 +4 =2-m或2-m=0.

∵4 +4 2 =2 =4,

而m0時2-m2,4 +4 2-m.

m=2.

(2)∵an=f(0)+f( )+f( )++f( )+f(1),an=f(1)+f( )+ f( )++f( )+f(0).

2an=[f(0)+f(1)]+[f( )+f( )]++[f(1)+f(0)]= + ++ = .

an= .

深化拓展

用函數(shù)的思想處理方程、不等式、數(shù)列等問題是一重要的思想方法.

【例4】 函數(shù)f(x)的定義域?yàn)镽,且對任意x、yR,有f(x+y)=f(x)+f(y),且當(dāng)x0時,f(x)0,f(1)=-2.

(1)證明f(x)是奇函數(shù);

(2)證明f(x)在R上是減函數(shù);

(3)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+ f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數(shù).

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數(shù).

(3)解:由于f(x)在R上是減函數(shù),故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對于任意實(shí)數(shù)x、y,定義運(yùn)算x*y=ax+by+cxy,其中a、b、c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算.現(xiàn)已知1*2=3,2*3=4,并且有一個非零實(shí)數(shù)m,使得對于任意實(shí)數(shù)x,都有x*m=x,試求m的值.

提示:由1*2=3,2*3=4,得

b=2+2c,a=-1-6c.

又由x*m=ax+bm+cmx=x對于任意實(shí)數(shù)x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關(guān)訓(xùn)練

夯實(shí)基礎(chǔ)

1.已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上

A.單調(diào)遞減且最大值為7 B.單調(diào)遞增且最大值為7

C.單調(diào)遞減且最大值為3 D.單調(diào)遞增且最大值為3

解析:互為反函數(shù)的兩個函數(shù)在各自定義區(qū)間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關(guān)于x的方程|x2-4x+3|-a=0有三個不相等的實(shí)數(shù)根,則實(shí)數(shù)a的值是___________________.

解析:作函數(shù)y=|x2-4x+3|的圖象,如下圖.

由圖象知直線y=1與y=|x2-4x+3|的圖象有三個交點(diǎn),即方程|x2-4x+3|=1也就是方程|x2-4x+3|-1=0有三個不相等的實(shí)數(shù)根,因此a=1.

答案:1

3.若存在常數(shù)p0,使得函數(shù)f(x)滿足f(px)=f(px- )(xR),則f(x)的一個正周期為__________.

解析:由f(px)=f(px- ),

令px=u,f(u)=f(u- )=f[(u+ )- ],T= 或 的整數(shù)倍.

答案: (或 的整數(shù)倍)

4.已知關(guān)于x的方程sin2x-2sinx-a=0有實(shí)數(shù)解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數(shù)f(x)= 的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域?yàn)锽.

(1)求A;

(2)若B A,求實(shí)數(shù)a的取值范圍.

解:(1)由2- 0,得 0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵B A,2a1或a+1-1,即a 或a-2.

而a1, 1或a-2.

故當(dāng)B A時,實(shí)數(shù)a的取值范圍是(-,-2][ ,1).

培養(yǎng)能力

6.(理)已知二次函數(shù)f(x)=x2+bx+c(b0,cR).

若f(x)的定義域?yàn)閇-1,0]時,值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請說明理由.

解:設(shè)符合條件的f(x)存在,

∵函數(shù)圖象的對稱軸是x=- ,

又b0,- 0.

①當(dāng)- 0,即01時,

函數(shù)x=- 有最小值-1,則

或 (舍去).

②當(dāng)-1- ,即12時,則

(舍去)或 (舍去).

③當(dāng)- -1,即b2時,函數(shù)在[-1,0]上單調(diào)遞增,則 解得

綜上所述,符合條件的函數(shù)有兩個,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數(shù)f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域?yàn)閇-1,0]時,值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請說明理由.

解:∵函數(shù)圖象的對稱軸是

x=- ,又b0,- - .

設(shè)符合條件的f(x)存在,

①當(dāng)- -1時,即b1時,函數(shù)f(x)在[-1,0]上單調(diào)遞增,則

②當(dāng)-1- ,即01時,則

(舍去).

綜上所述,符合條件的函數(shù)為f(x)=x2+2x.

7.已知函數(shù)f(x)=x+ 的定義域?yàn)?0,+),且f(2)=2+ .設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問:|PM||PN|是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+ =2+ ,a= .

(2)設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),則有y0=x0+ ,x00,由點(diǎn)到直線的距離公式可知,|PM|= = ,|PN|=x0,有|PM||PN|=1,即|PM||PN|為定值,這個值為1.

(3)由題意可設(shè)M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即 =-1.解得t= (x0+y0).

又y0=x0+ ,t=x0+ .

S△OPM= + ,S△OPN= x02+ .

S四邊形OMPN=S△OPM+S△OPN= (x02+ )+ 1+ .

當(dāng)且僅當(dāng)x0=1時,等號成立.

此時四邊形OMPN的面積有最小值1+ .

探究創(chuàng)新

8.有一塊邊長為4的正方形鋼板,現(xiàn)對其進(jìn)行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識作了如下設(shè)計(jì):如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設(shè)計(jì)存在缺陷(材料有所浪費(fèi)),請你重新設(shè)計(jì)切、焊方法,使材料浪費(fèi)減少,而且所得長方體容器的容積V2V1.

解:(1)設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1= ,x2=2(舍去).

而V1=12(x- )(x-2),

又當(dāng)x 時,V10;當(dāng)

當(dāng)x= 時,V1取最大值 .

(2)重新設(shè)計(jì)方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.

新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結(jié)

1.函數(shù)知識可深可淺,復(fù)習(xí)時應(yīng)掌握好分寸,如二次函數(shù)問題應(yīng)高度重視,其他如分類討論、探索性問題屬熱點(diǎn)內(nèi)容,應(yīng)適當(dāng)加強(qiáng).

2.數(shù)形結(jié)合思想貫穿于函數(shù)研究的各個領(lǐng)域的全部過程中,掌握了這一點(diǎn),將會體會到函數(shù)問題既千姿百態(tài),又有章可循.

●教師下載中心

教學(xué)點(diǎn)睛

數(shù)形結(jié)合和數(shù)形轉(zhuǎn)化是解決本章問題的重要思想方法,應(yīng)要求學(xué)生熟練掌握用函數(shù)的圖象及方程的曲線去處理函數(shù)、方程、不等式等問題.

拓展題例

【例1】 設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對任意a、b[-1,1],當(dāng)a+b0時,都有 0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x- )

(3)記P={x|y=f(x-c)},Q={x|y=f(x-c2)},且PQ= ,求c的取值范圍.

解:設(shè)-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數(shù),f(-x2)=-f(x2).

f(x1)

f(x)是增函數(shù).

(1)∵ab,f(a)f(b).

(2)由f(x- )

- .

不等式的解集為{x|- }.

(3)由-11,得-1+c1+c,

P={x|-1+c1+c}.

由-11,得-1+c21+c2,

Q={x|-1+c21+c2}.

∵PQ= ,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

(理)若g(x)=f(x)+ ,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

解:(1)設(shè)f(x)圖象上任一點(diǎn)坐標(biāo)為(x,y),點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對稱點(diǎn)(-x,2-y)在h(x)的圖象上.

2-y=-x+ +2.

y=x+ ,即f(x)=x+ .

(2)(文)g(x)=(x+ )x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減 - 2,

a-4.

(理)g(x)=x+ .

∵g(x)=1- ,g(x)在(0,2]上遞減,

1- 0在x(0,2]時恒成立,

即ax2-1在x(0,2]時恒成立.

∵x(0,2]時,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關(guān)于時間n(130,nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n)圖象中的點(diǎn)位于斜率為5和-3的兩條直線上,兩直線的交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.

(1)求f(n)的表達(dá)式,及前m天的銷售總數(shù);

(2)按規(guī)律,當(dāng)該專賣店銷售總數(shù)超過400件時,社會上流行該服裝,而日銷售量連續(xù)下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數(shù)是否會超過10天?并說明理由.

解:(1)由圖形知,當(dāng)1m且nN*時,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過400件,即開始流行.

設(shè)第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時間為14號至21號.

該服裝流行時間不超過10天.

高三數(shù)學(xué)復(fù)習(xí)課件(篇10)

【高考要求】:三角函數(shù)的有關(guān)概念(B).

【教學(xué)目標(biāo)】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

【教學(xué)重難點(diǎn)】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

【知識復(fù)習(xí)與自學(xué)質(zhì)疑】

一、問題.

1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?

2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關(guān)系式?

二、練習(xí).

1.給出下列命題:

(1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2 與角 的終邊不可能相同;

(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負(fù)半軸上。其中正確的命題的序號是

2.設(shè)P 點(diǎn)是角終邊上一點(diǎn),且滿足 則 的值是

3.一個扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=

4.若 則角 的終邊在 象限。

5.在直角坐標(biāo)系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關(guān)系是

6.若 是第三象限的角,則- , 的終邊落在何處?

【交流展示、互動探究與精講點(diǎn)撥】

例1.如圖, 分別是角 的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在 上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線 上,求 的值;

(2)已知角的終邊上有一點(diǎn)A ,求 的值。

例3.若 ,則 在第 象限.

例4.若一扇形的周長為20 ,則當(dāng)扇形的圓心角 等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角 的終邊上一點(diǎn)的坐標(biāo)為 ,則角 的弧度數(shù)為 .

2、若 ,又 是第二,第三象限角,則 的取值范圍是 .

3、一個半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .

4、已知點(diǎn)P 在第三象限,則 角終邊在第 象限.

5、設(shè)角 的終邊過點(diǎn)P ,則 的值為 .

6、已知角 的終邊上一點(diǎn)P 且 ,求 和 的值.

【遷移應(yīng)用】

1、經(jīng)過3小時35分鐘,分針轉(zhuǎn)過的角的弧度是 .時針轉(zhuǎn)過的角的弧度數(shù)是 .

2、若點(diǎn)P 在第一象限,則在 內(nèi) 的取值范圍是 .

3、若點(diǎn)P從(1,0)出發(fā),沿單位圓 逆時針方向運(yùn)動 弧長到達(dá)Q點(diǎn),則Q點(diǎn)坐標(biāo)為 .

4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個角的終邊重合,求角 的值.

高三數(shù)學(xué)復(fù)習(xí)課件(篇11)

(一)引入:

(1)情景1

王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現(xiàn)金,踏著可載重350千克的三輪車開始自己的發(fā)財(cái)大計(jì),可明天應(yīng)該收購多少大豆與紅薯呢?王老漢決定與家人合計(jì).回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應(yīng)收購大豆”,孫子說:“收購紅薯每元成本獲利多故應(yīng)收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

【問題情景使學(xué)生感受到數(shù)學(xué)是來自現(xiàn)實(shí)生活的,讓學(xué)生體會從實(shí)際問題中抽象出數(shù)學(xué)問題的過程;通過情景我們不僅能從中引出本堂課的內(nèi)容“二元一次不等式(組)的概念,及其所表示的平面區(qū)域”,也為后面的內(nèi)容“簡單的線性規(guī)劃問題”埋下了伏筆.】

(2)問題與探究

師:同學(xué)們,你們能用具體的數(shù)字體現(xiàn)出王老漢的兩個孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數(shù)據(jù))

師:請你們各自為王老漢設(shè)計(jì)一種收購方案.

生,獨(dú)立思考,并寫出自己的方案.(師,查看學(xué)生各人的設(shè)計(jì)方案并有針對性的請幾個同學(xué)說出自己的方案并記錄,注意:要特意選出2個不合理的方案)

師:這些同學(xué)的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導(dǎo)學(xué)生設(shè)出未知量,列出起約束作用的不等式組)

師,讓幾個學(xué)生上黑板列出不等式組,并對之分析指正

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)

師:同學(xué)們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的一組解嗎?

生,討論并回答(教師記錄幾組,并引導(dǎo)學(xué)生表示成有序?qū)崝?shù)對形式.)

師:同學(xué)們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的一組解嗎?

生,討論并回答(教師對于學(xué)生的回答指正并有選擇性的記錄幾組比較簡單的數(shù)據(jù),對于這些數(shù)據(jù)要事先設(shè)計(jì)好并在課件的坐標(biāo)系中標(biāo)出備用)

(教師對引例中給出的不等式組介紹,并指出上面的正確的設(shè)計(jì)方案都是不等式組的解.進(jìn)而介紹二元一次不等式(組)解與解集的概念)

師:我們知道每一組有序?qū)崝?shù)對都對應(yīng)于平面直角坐標(biāo)系上的一個點(diǎn),你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解在平面直角坐標(biāo)系上標(biāo)記出來嗎?

生,討論并在下面作圖(師巡視檢查并對個別同學(xué)的錯誤進(jìn)行指正)

師,利用多媒體課件展示平面直角坐標(biāo)系及不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解所對應(yīng)的一些點(diǎn),讓學(xué)生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解在平面直角坐標(biāo)系中的位置有什么特點(diǎn)?(由于點(diǎn)太少,我們的學(xué)生可能得不出結(jié)論)

師,引導(dǎo)學(xué)生在同一平面直角坐標(biāo)系中畫出方程二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解所對應(yīng)的圖形(一條直線,指導(dǎo)學(xué)生用與坐標(biāo)軸的兩個交點(diǎn)作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解為坐標(biāo)的點(diǎn)在平面直角坐標(biāo)系中的位置有什么特點(diǎn)?

生,提出猜想:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)分得的左下半平面.

【教師通過幾個簡單的問題,讓學(xué)生產(chǎn)生了利用平面區(qū)域表示二元一次不等式的想法,而后再讓學(xué)生大膽的猜想,細(xì)心的論證,讓他們從中讓體會到對新知識進(jìn)行科學(xué)探索的全過程.】

師:這個結(jié)論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數(shù)學(xué)知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點(diǎn)再去檢驗(yàn),有的可能會試著用坐標(biāo)軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)下方的點(diǎn)與對應(yīng)直線上的點(diǎn)對照比較的方法進(jìn)行說明)

師,在巡視的基礎(chǔ)上請運(yùn)用不同方法的同學(xué)闡述自己的理由,并對于正確的作法給予表揚(yáng),然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)橫坐標(biāo)相同而縱坐標(biāo)不同的點(diǎn)對應(yīng)分析的方法進(jìn)行證明.

師:直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的右上半平面應(yīng)怎么表示?

生:表示為二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì),(很快回答)

師:從中你能得出什么結(jié)論?

生,討論并得到一般性結(jié)論(教師總結(jié)糾正)

(教師總結(jié)并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的某側(cè)所有點(diǎn)組成的平面區(qū)域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示的平面區(qū)域因包含邊界故直線畫成實(shí)線.)

師:點(diǎn)O(0,0)是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)一個解嗎?據(jù)此你能說出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)對應(yīng)的平面區(qū)域相對與直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的位置嗎?

生,作圖分析,討論并回答(師,對學(xué)生的回答進(jìn)行分析)

師:結(jié)合上面問題請同學(xué)們歸納出作不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)對應(yīng)的平面區(qū)域的過程.

生,討論并回答(師,對于學(xué)生的答案給以分析,并肯定其中正確的結(jié)論)

師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)對應(yīng)的平面區(qū)域的過程嗎?

生,討論并回答(教師總結(jié)并用多媒體展示:直線定界,特殊點(diǎn)定域)

師:若點(diǎn)P(3,-1),點(diǎn)Q(2,4)在直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的異側(cè),你能用數(shù)學(xué)語言表示嗎?

生,討論,思考(教師巡視,并觀察學(xué)生的解答過程,最后引導(dǎo)學(xué)生得出:一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解,一個是不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解)

師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的范圍嗎?

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)并求解.

師:若把上面問題改為點(diǎn)在同側(cè)呢?請同學(xué)們課后完成.

【在教師的幫助下學(xué)生通過自己的分析得出了正確的結(jié)論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數(shù)學(xué)的學(xué)習(xí)興趣.同時也讓他們體會人們在認(rèn)識新生事物時從特殊到一般,再從一般到特殊的認(rèn)知過程.】

(二)實(shí)例展示:

例1、畫出不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示的平面區(qū)域.

例2、用平面區(qū)域表示不等式組二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)的解集.

【通過利用多媒體對實(shí)例的展示讓學(xué)生體會到畫出不等式表示的平面區(qū)域的基本流程:直線定界,特殊點(diǎn)定域,而不等式(組)表示的平面區(qū)域是各個不等式表示的平面區(qū)域的公共部分.同時對具體作圖中的細(xì)節(jié)問題進(jìn)行點(diǎn)拔.】

(三)練習(xí):

學(xué)生練習(xí)P86第1-3題.

【及時鞏固所學(xué),進(jìn)一步體會畫出不等式(組)表示的平面區(qū)域的基本流程】

(四)課后延伸:

師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區(qū)域來表示出來的問題.如果反過來給出了平面區(qū)域你能寫出相關(guān)的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點(diǎn)構(gòu)成的三角形內(nèi)部區(qū)域?qū)?yīng)的不等式組嗎?

你能寫出不等式形如二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)這種不等式表示的平面區(qū)域?

(五)小結(jié)與作業(yè):

二元一次不等式二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)表示直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)某側(cè)所有點(diǎn)組成的平面區(qū)域,畫出不等式(組)表示的平面區(qū)域的基本流程:直線定界,特殊點(diǎn)定域(一般找原點(diǎn))

作業(yè):第93頁A組習(xí)題1、2,

補(bǔ)充作業(yè):若線段PQ的兩個端點(diǎn)坐標(biāo)為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規(guī)劃問題的模塊單元教學(xué)設(shè)計(jì)與線段PQ

高三數(shù)學(xué)復(fù)習(xí)課件(篇12)

一、教學(xué)內(nèi)容分析

本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的最值與解問題;運(yùn)用線性規(guī)劃知識解決一些簡單的實(shí)際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識解決實(shí)際問題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。

二、學(xué)生學(xué)習(xí)情況分析

本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,數(shù)形結(jié)合思想有所了解.但從數(shù)學(xué)知識上看學(xué)生對于涉及多個已知數(shù)據(jù)、多個字母變量,多個不等關(guān)系的知識接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對于圖解法還缺少認(rèn)識,對數(shù)形結(jié)合的思想方法的掌握還需時日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。

三、設(shè)計(jì)思想

以問題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問題到數(shù)學(xué)問題”的數(shù)學(xué)建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問題、解決問題的能力。

四、教學(xué)目標(biāo)

1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫二元一次

不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、

可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法

求線性目標(biāo)函數(shù)的最值與相應(yīng)解;

2、過程與方法:從實(shí)際問題中抽象出簡單的線性規(guī)劃問題,提高學(xué)生的數(shù)學(xué)建模能力;

在探究的過程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、

化歸能力、探索能力、合情推理能力;

3、情態(tài)與價值:在應(yīng)用圖解法解題的過程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識;體驗(yàn)數(shù)學(xué)來源于生活而服務(wù)于生活的特性.

五、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):從實(shí)際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組

的解集及用圖解法解簡單的二元線性規(guī)劃問題;

難點(diǎn):二元一次不等式所表示的平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問題的過

程探究,簡單的二元線性規(guī)劃問題的圖解法的探究.

六、教學(xué)基本流程

第一課時,利用生動的情景激起學(xué)生求知的欲望,從中抽象出數(shù)學(xué)問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆.通過學(xué)生的自主探究,分類討論,大膽猜想,細(xì)心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個難點(diǎn);通過例1、例2的討論與求解引導(dǎo)學(xué)生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點(diǎn)定域);最后通過練習(xí)加以鞏固。

第二課時,重現(xiàn)引例,在學(xué)生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結(jié)出從實(shí)際問題中抽象出數(shù)學(xué)問題的基本過程:理清數(shù)據(jù)關(guān)系(列表)→設(shè)立決策變量→建立數(shù)學(xué)關(guān)系式→畫出平面區(qū)域.讓學(xué)生對例3、例4進(jìn)行分析與討論進(jìn)一步完善這一過程,突破本小節(jié)的第二個難點(diǎn)。

第三課時,設(shè)計(jì)情景,借助前兩個課時所學(xué),設(shè)立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關(guān)概念,并讓學(xué)生思考探究,利用特殊值進(jìn)行猜測,找到方案;再引導(dǎo)學(xué)生對目標(biāo)函數(shù)進(jìn)行變形轉(zhuǎn)化,利用直線的圖象對上述問題進(jìn)行幾何探究,把最值問題轉(zhuǎn)化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學(xué)生在討論中達(dá)成共識,總結(jié)出簡單線性規(guī)劃問題的圖解法的基本步驟.通過例5的展示讓學(xué)生從動態(tài)的角度感受圖解法.最后再現(xiàn)情景1,并對之作出完美的解答。

第四課時,給出新的引例,讓學(xué)生體會到線性規(guī)劃問題的普遍性.讓學(xué)生討論分析,對引例給出解答,并綜合前三個課時的教學(xué)內(nèi)容,連綴成線,總結(jié)出簡單線性規(guī)劃的應(yīng)用性問題的一般解答步驟,通過例6,例7的分析與展示進(jìn)一步完善這一過程.總結(jié)線性規(guī)劃的應(yīng)用性問題的幾種類型,讓學(xué)生更深入的體會到優(yōu)化理論,更好的認(rèn)識到數(shù)學(xué)來源于生活而運(yùn)用于生活的特點(diǎn)。

七、教學(xué)過程設(shè)計(jì)

高三數(shù)學(xué)復(fù)習(xí)課件(篇13)

教學(xué)目標(biāo)

知識目標(biāo)等差數(shù)列定義等差數(shù)列通項(xiàng)公式

能力目標(biāo)掌握等差數(shù)列定義等差數(shù)列通項(xiàng)公式

情感目標(biāo)培養(yǎng)學(xué)生的觀察、推理、歸納能力

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn)等差數(shù)列的概念的理解與掌握

等差數(shù)列通項(xiàng)公式推導(dǎo)及應(yīng)用教學(xué)難點(diǎn)等差數(shù)列“等差”的理解、把握和應(yīng)用

教學(xué)過程

由XX《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

問題:多媒體演示,觀察————發(fā)現(xiàn)?

一、等差數(shù)列定義:

一般地,如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

例1:觀察下面數(shù)列是否是等差數(shù)列:…。

二、等差數(shù)列通項(xiàng)公式:

已知等差數(shù)列{an}的首項(xiàng)是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數(shù)列的首項(xiàng)a1是3,公差d是2,求它的通項(xiàng)公式。

分析:知道a1,d,求an。代入通項(xiàng)公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數(shù)列10,8,6,4…的第20項(xiàng)。

分析:根據(jù)a1=10,d=—2,先求出通項(xiàng)公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項(xiàng)an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項(xiàng)公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數(shù)組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習(xí)

1、判斷下列數(shù)列是否為等差數(shù)列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差數(shù)列{an}的前三項(xiàng)依次為a—6,—3a—5,—10a—1,則a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續(xù)提出問題

已知數(shù)列{an}前n項(xiàng)和為……

作業(yè)

P116習(xí)題3。21,2

高三數(shù)學(xué)復(fù)習(xí)課件(篇14)

一.課標(biāo)要求:

(1)空間向量及其運(yùn)算

① 經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;

② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示;

③ 掌握空間向量的線性運(yùn)算及其坐標(biāo)表示;

④ 掌握空間向量的數(shù)量積及其坐標(biāo)表示,能運(yùn)用向量的數(shù)量積判斷向量的共線與垂直。

(2)空間向量的應(yīng)用

① 理解直線的方向向量與平面的法向量;

② 能用向量語言表述線線、線面、面面的垂直、平行關(guān)系;

③ 能用向量方法證明有關(guān)線、面位置關(guān)系的一些定理(包括三垂線定理);

④ 能用向量方法解決線線、線面、面面的夾角的計(jì)算問題,體會向量方法在研究幾何問題中的作用。

二.命題走向

本講內(nèi)容主要涉及空間向量的坐標(biāo)及運(yùn)算、空間向量的應(yīng)用。本講是立體幾何的核心內(nèi)容,高考對本講的考察形式為:以客觀題形式考察空間向量的概念和運(yùn)算,結(jié)合主觀題借助空間向量求夾角和距離。

預(yù)測20xx年高考對本講內(nèi)容的考查將側(cè)重于向量的應(yīng)用,尤其是求夾角、求距離,教材上淡化了利用空間關(guān)系找角、找距離這方面的講解,加大了向量的應(yīng)用,因此作為立體幾何解答題,用向量法處理角和距離將是主要方法,在復(fù)習(xí)時應(yīng)加大這方面的訓(xùn)練力度。

三.要點(diǎn)精講

1.空間向量的概念

向量:在空間,我們把具有大小和方向的量叫做向量。如位移、速度、力等。

相等向量:長度相等且方向相同的向量叫做相等向量。

表示方法:用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量。YJs21.CoM

說明:①由相等向量的概念可知,一個向量在空間平移到任何位置,仍與原來的向量相等,用同向且等長的有向線段表示;②平面向量僅限于研究同一平面內(nèi)的平移,而空間向量研究的是空間的平移。

2.向量運(yùn)算和運(yùn)算率

加法交換率:

加法結(jié)合率:

數(shù)乘分配率:

說明:①引導(dǎo)學(xué)生利用右圖驗(yàn)證加法交換率,然后推廣到首尾相接的若干向量之和;②向量加法的平行四邊形法則在空間仍成立。

3.平行向量(共線向量):

如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。 平行于 記作 ∥ 。

注意:當(dāng)我們說 、 共線時,對應(yīng)的有向線段所在直線可能是同一直線,也可能是平行直線;當(dāng)我們說 、 平行時,也具有同樣的意義。

共線向量定理:對空間任意兩個向量 ( )、 , ∥ 的充要條件是存在實(shí)數(shù) 使 =

注:⑴上述定理包含兩個方面:①性質(zhì)定理:若 ∥ ( 0),則有 = ,其中 是唯一確定的實(shí)數(shù)。②判斷定理:若存在唯一實(shí)數(shù) ,使 = ( 0),則有 ∥ (若用此結(jié)論判斷 、 所在直線平行,還需 (或 )上有一點(diǎn)不在 (或 )上)。

⑵對于確定的 和 , = 表示空間與 平行或共線,長度為 | |,當(dāng) 0時與 同向,當(dāng) 0時與 反向的所有向量。

⑶若直線l∥ , ,P為l上任一點(diǎn),O為空間任一點(diǎn),下面根據(jù)上述定理來推導(dǎo) 的表達(dá)式。

推論:如果 l為經(jīng)過已知點(diǎn)A且平行于已知非零向量 的直線,那么對任一點(diǎn)O,點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,滿足等式

①其中向量 叫做直線l的方向向量。

在l上取 ,則①式可化為 ②

當(dāng) 時,點(diǎn)P是線段AB的中點(diǎn),則 ③

①或②叫做空間直線的向量參數(shù)表示式,③是線段AB的中點(diǎn)公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基礎(chǔ),也是常用的直線參數(shù)方程的表示形式;⑵推論的用途:解決三點(diǎn)共線問題。⑶結(jié)合三角形法則記憶方程。

4.向量與平面平行:

如果表示向量 的有向線段所在直線與平面 平行或 在 平面內(nèi),我們就說向量 平行于平面 ,記作 ∥ 。注意:向量 ∥ 與直線a∥ 的聯(lián)系與區(qū)別。

共面向量:我們把平行于同一平面的向量叫做共面向量。

共面向量定理 如果兩個向量 、 不共線,則向量 與向量 、 共面的充要條件是存在實(shí)數(shù)對x、y,使 ①

注:與共線向量定理一樣,此定理包含性質(zhì)和判定兩個方面。

推論:空間一點(diǎn)P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對x、y,使

④或?qū)臻g任一定點(diǎn)O,有 ⑤

在平面MAB內(nèi),點(diǎn)P對應(yīng)的實(shí)數(shù)對(x, y)是唯一的。①式叫做平面MAB的向量表示式。

又∵ 代入⑤,整理得

⑥由于對于空間任意一點(diǎn)P,只要滿足等式④、⑤、⑥之一(它們只是形式不同的同一等式),點(diǎn)P就在平面MAB內(nèi);對于平面MAB內(nèi)的任意一點(diǎn)P,都滿足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共線的兩個向量 、 (或不共線三點(diǎn)M、A、B)確定的空間平面的向量參數(shù)方程,也是M、A、B、P四點(diǎn)共面的充要條件。

5.空間向量基本定理:如果三個向量 、 、 不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組x, y, z, 使

說明:⑴由上述定理知,如果三個向量 、 、 不共面,那么所有空間向量所組成的集合就是 ,這個集合可看作由向量 、 、 生成的,所以我們把{ , , }叫做空間的一個基底, , , 都叫做基向量;⑵空間任意三個不共面向量都可以作為空間向量的一個基底;⑶一個基底是指一個向量組,一個基向量是指基底中的某一個向量,二者是相關(guān)聯(lián)的不同的概念;⑷由于 可視為與任意非零向量共線。與任意兩個非零向量共面,所以,三個向量不共面就隱含著它們都不是 。

推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對空間任一點(diǎn)P,都存在唯一的有序?qū)崝?shù)組 ,使

6.數(shù)量積

(1)夾角:已知兩個非零向量 、 ,在空間任取一點(diǎn)O,作 , ,則角AOB叫做向量 與 的夾角,記作

說明:⑴規(guī)定0 ,因而 = ;

⑵如果 = ,則稱 與 互相垂直,記作

⑶在表示兩個向量的夾角時,要使有向線段的起點(diǎn)重合,注意圖(3)、(4)中的兩個向量的夾角不同,

圖(3)中AOB= ,

圖(4)中AOB= ,

從而有 = = .

(2)向量的模:表示向量的有向線段的長度叫做向量的長度或模。

(3)向量的數(shù)量積: 叫做向量 、 的數(shù)量積,記作 。

即 = ,

向量 :

(4)性質(zhì)與運(yùn)算率

⑴ 。 ⑴

⑵ =0 ⑵ =

⑶ ⑶

四.典例解析

題型1:空間向量的.概念及性質(zhì)

例1.有以下命題:①如果向量 與任何向量不能構(gòu)成空間向量的一組基底,那么 的關(guān)系是不共線;② 為空間四點(diǎn),且向量 不構(gòu)成空間的一個基底,那么點(diǎn) 一定共面;③已知向量 是空間的一個基底,則向量 ,也是空間的一個基底。其中正確的命題是( )

①② ①③ ②③ ①②③

解析:對于①如果向量 與任何向量不能構(gòu)成空間向量的一組基底,那么 的關(guān)系一定共線所以①錯誤。②③正確。

例2.下列命題正確的是( )

若 與 共線, 與 共線,則 與 共線;

向量 共面就是它們所在的直線共面;

零向量沒有確定的方向;

若 ,則存在唯一的實(shí)數(shù) 使得 ;

解析:A中向量 為零向量時要注意,B中向量的共線、共面與直線的共線、共面不一樣,D中需保證 不為零向量。

題型2:空間向量的基本運(yùn)算

例3.如圖:在平行六面體 中, 為 與 的交點(diǎn)。若 , , ,則下列向量中與 相等的向量是( )

例4.已知: 且 不共面.若 ∥ ,求 的值.

題型3:空間向量的坐標(biāo)

例5.(1)已知兩個非零向量 =(a1,a2,a3), =(b1,b2,b3),它們平行的充要條件是()

A. :| |= :| |B.a1b1=a2b2=a3b3

C.a1b1+a2b2+a3b3=0D.存在非零實(shí)數(shù)k,使 =k

(2)已知向量 =(2,4,x), =(2,y,2),若| |=6, ,則x+y的值是()

A. -3或1 B.3或-1 C. -3 D.1

(3)下列各組向量共面的是()

A. =(1,2,3), =(3,0,2), =(4,2,5)

B. =(1,0,0), =(0,1,0), =(0,0,1)

C. =(1,1,0), =(1,0,1), =(0,1,1)

D. =(1,1,1), =(1,1,0), =(1,0,1)

解析:(1)D;點(diǎn)撥:由共線向量定線易知;

(2)A 點(diǎn)撥:由題知 或 ;

例6.已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4)。設(shè) = , = ,(1)求 和 的夾角 ;(2)若向量k + 與k -2 互相垂直,求k的值.

思維入門指導(dǎo):本題考查向量夾角公式以及垂直條件的應(yīng)用,套用公式即可得到所要求的結(jié)果.

解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4), = , = ,

=(1,1,0), =(-1,0,2).

(1)cos = = - ,

和 的夾角為- 。

(2)∵k + =k(1,1,0)+(-1,0,2)=(k-1,k,2),

k -2 =(k+2,k,-4),且(k + )(k -2 ),

(k-1,k,2)(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0。

則k=- 或k=2。

點(diǎn)撥:第(2)問在解答時也可以按運(yùn)算律做。( + )(k -2 )=k2 2-k -2 2=2k2+k-10=0,解得k=- ,或k=2。

題型4:數(shù)量積

例7.設(shè) 、 、c是任意的非零平面向量,且相互不共線,則

①( ) -( ) = ②| |-| || - | ③( ) -( ) 不與 垂直

④(3 +2 )(3 -2 )=9| |2-4| |2中,是真命題的有( )

A.①② B.②③ C.③④ D.②④

答案:D

解析:①平面向量的數(shù)量積不滿足結(jié)合律.故①假;

②由向量的減法運(yùn)算可知| |、| |、| - |恰為一個三角形的三條邊長,由兩邊之差小于第三邊,故②真;

③因?yàn)閇( ) -( ) ] =( ) -( ) =0,所以垂直.故③假;

例8.(1)已知向量 和 的夾角為120,且| |=2,| |=5,則(2 - ) =_____.

(2)設(shè)空間兩個不同的單位向量 =(x1,y1,0), =(x2,y2,0)與向量 =(1,1,1)的夾角都等于 。(1)求x1+y1和x1y1的值;(2)求 , 的大小(其中0 , 。

解析:(1)答案:13;解析:∵(2 - ) =2 2- =2| |2-| || |cos120=24-25(- )=13。

(2)解:(1)∵| |=| |=1,x +y =1,x =y =1.

又∵ 與 的夾角為 , =| || |cos = = .

又∵ =x1+y1,x1+y1= 。

另外x +y =(x1+y1)2-2x1y1=1,2x1y1=( )2-1= .x1y1= 。

(2)cos , = =x1x2+y1y2,由(1)知,x1+y1= ,x1y1= .x1,y1是方程x2- x+ =0的解.

或 同理可得 或

∵ , 或

cos , + = + = .

∵0 , , , = 。

評述:本題考查向量數(shù)量積的運(yùn)算法則。

題型5:空間向量的應(yīng)用

例9.(1)已知a、b、c為正數(shù),且a+b+c=1,求證: + + 4 。

(2)已知F1=i+2j+3k,F(xiàn)2=-2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于同一物體上,使物體從點(diǎn)M1(1,-2,1)移到點(diǎn)M2(3,1,2),求物體合力做的功。

解析:(1)設(shè) =( , , ), =(1,1,1),

則| |=4,| |= .

∵ | || |,

= + + | || |=4 .

當(dāng) = = 時,即a=b=c= 時,取=號。

例10.如圖,直三棱柱 中, 求證:

證明:

五.思維總結(jié)

本講內(nèi)容主要有空間直角坐標(biāo)系,空間向量的坐標(biāo)表示,空間向量的坐標(biāo)運(yùn)算,平行向量,垂直向量坐標(biāo)之間的關(guān)系以及中點(diǎn)公式.空間直角坐標(biāo)系是選取空間任意一點(diǎn)O和一個單位正交基底{i,j,k}建立坐標(biāo)系,對于O點(diǎn)的選取要既有作圖的直觀性,而且使各點(diǎn)的坐標(biāo),直線的坐標(biāo)表示簡化,要充分利用空間圖形中已有的直線的關(guān)系和性質(zhì);空間向量的坐標(biāo)運(yùn)算同平面向量類似,具有類似的運(yùn)算法則.一個向量在不同空間的表達(dá)方式不一樣,實(shí)質(zhì)沒有改變.因而運(yùn)算的方法和運(yùn)算規(guī)律結(jié)論沒變。如向量的數(shù)量積ab=|a||b|cos在二維、三維都是這樣定義的,不同點(diǎn)僅是向量在不同空間具有不同表達(dá)形式.空間兩向量平行時同平面兩向量平行時表達(dá)式不一樣,但實(shí)質(zhì)是一致的,即對應(yīng)坐標(biāo)成比例,且比值為 ,對于中點(diǎn)公式要熟記。

對本講內(nèi)容的考查主要分以下三類:

1.以選擇、填空題型考查本章的基本概念和性質(zhì)

此類題一般難度不大,用以解決有關(guān)長度、夾角、垂直、判斷多邊形形狀等問題。

2.向量在空間中的應(yīng)用

在空間坐標(biāo)系下,通過向量的坐標(biāo)的表示,運(yùn)用計(jì)算的方法研究三維空間幾何圖形的性質(zhì)。

在復(fù)習(xí)過程中,抓住源于課本,高于課本的指導(dǎo)方針。本講考題大多數(shù)是課本的變式題,即源于課本。因此,掌握雙基、精通課本是本章關(guān)鍵。

相信《高三數(shù)學(xué)復(fù)習(xí)課件范例14篇》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼師資料,工作計(jì)劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準(zhǔn)備了高三數(shù)學(xué)復(fù)習(xí)課件專題,希望您能喜歡!

相關(guān)推薦

  • 學(xué)習(xí)復(fù)習(xí)計(jì)劃范例11篇 俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在平時的學(xué)習(xí)和工作中,幼兒園教師經(jīng)常會提前準(zhǔn)備一些資料。資料可以指生產(chǎn)、生活中必需的東西。如:生產(chǎn)資料;生活資料。有了資料,這樣接下來工作才會更上一層樓!你是不是在尋找一些可以用到的幼師資料呢?下面是小編精心整理的"學(xué)習(xí)復(fù)習(xí)計(jì)劃范例11篇",歡迎閱讀,希望你能夠喜歡...
    2023-05-09 閱讀全文
  • 最新中考語文復(fù)習(xí)課件(收藏14篇) 經(jīng)過幼兒教師教育網(wǎng)小編的不斷調(diào)整和修修改進(jìn)這篇“中考語文復(fù)習(xí)課件”更加含蓄。教案課件是老師不可缺少的課件,每位老師都應(yīng)該他細(xì)設(shè)計(jì)教案課件。教案的編寫是教師課堂教學(xué)的決定性因素之一。供有需要的朋友參考借鑒,希望可以幫助到你!...
    2023-05-15 閱讀全文
  • 小學(xué)三年級數(shù)學(xué)課件(錦集14篇) 學(xué)生們有一個生動有趣的課堂,離不開老師辛苦準(zhǔn)備的教案,要是還沒寫的話就要注意了。?教案課件是教學(xué)計(jì)劃的重要組成部分,必須梳理清晰,網(wǎng)上有哪些值得推薦的優(yōu)秀教案課件?這篇文章將以系統(tǒng)的方式對“小學(xué)三年級數(shù)學(xué)課件”進(jìn)行分析和解讀,如果您喜歡本文可以分享給身邊朋友喔!...
    2023-05-07 閱讀全文
  • 高三學(xué)習(xí)計(jì)劃范例15篇 如果您沒有習(xí)慣閱讀范文,那么不妨開始行動吧。范文可以幫助我們提供思路,閱讀優(yōu)秀的范文也能幫助我們更好地了解自我和他人。幼兒教師教育網(wǎng)為您整理了與“高三學(xué)習(xí)計(jì)劃”相關(guān)的內(nèi)容,請不要忘記收藏本網(wǎng)頁哦!...
    2023-06-11 閱讀全文
  • 高三學(xué)習(xí)計(jì)劃(范例9篇) 我為您準(zhǔn)備了“高三學(xué)習(xí)計(jì)劃”相關(guān)內(nèi)容,希望本文能為您提供參考并受到您的喜愛。在當(dāng)今日益現(xiàn)代化的職場,書寫和修改文檔已成為一項(xiàng)基本技能。通過利用范文進(jìn)行寫作,會產(chǎn)生出人意料的效果,因此相信好的范文有助于極大地促進(jìn)寫作水平的提升。...
    2023-05-31 閱讀全文

俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。在平時的學(xué)習(xí)和工作中,幼兒園教師經(jīng)常會提前準(zhǔn)備一些資料。資料可以指生產(chǎn)、生活中必需的東西。如:生產(chǎn)資料;生活資料。有了資料,這樣接下來工作才會更上一層樓!你是不是在尋找一些可以用到的幼師資料呢?下面是小編精心整理的"學(xué)習(xí)復(fù)習(xí)計(jì)劃范例11篇",歡迎閱讀,希望你能夠喜歡...

2023-05-09 閱讀全文

經(jīng)過幼兒教師教育網(wǎng)小編的不斷調(diào)整和修修改進(jìn)這篇“中考語文復(fù)習(xí)課件”更加含蓄。教案課件是老師不可缺少的課件,每位老師都應(yīng)該他細(xì)設(shè)計(jì)教案課件。教案的編寫是教師課堂教學(xué)的決定性因素之一。供有需要的朋友參考借鑒,希望可以幫助到你!...

2023-05-15 閱讀全文

學(xué)生們有一個生動有趣的課堂,離不開老師辛苦準(zhǔn)備的教案,要是還沒寫的話就要注意了。?教案課件是教學(xué)計(jì)劃的重要組成部分,必須梳理清晰,網(wǎng)上有哪些值得推薦的優(yōu)秀教案課件?這篇文章將以系統(tǒng)的方式對“小學(xué)三年級數(shù)學(xué)課件”進(jìn)行分析和解讀,如果您喜歡本文可以分享給身邊朋友喔!...

2023-05-07 閱讀全文

如果您沒有習(xí)慣閱讀范文,那么不妨開始行動吧。范文可以幫助我們提供思路,閱讀優(yōu)秀的范文也能幫助我們更好地了解自我和他人。幼兒教師教育網(wǎng)為您整理了與“高三學(xué)習(xí)計(jì)劃”相關(guān)的內(nèi)容,請不要忘記收藏本網(wǎng)頁哦!...

2023-06-11 閱讀全文

我為您準(zhǔn)備了“高三學(xué)習(xí)計(jì)劃”相關(guān)內(nèi)容,希望本文能為您提供參考并受到您的喜愛。在當(dāng)今日益現(xiàn)代化的職場,書寫和修改文檔已成為一項(xiàng)基本技能。通過利用范文進(jìn)行寫作,會產(chǎn)生出人意料的效果,因此相信好的范文有助于極大地促進(jìn)寫作水平的提升。...

2023-05-31 閱讀全文