一元二次方程教案。
前輩告訴我們,做事之前提前下功夫是成功的一部分。每一位任課幼兒園的老師都希望小朋友們能在幼兒園學(xué)到知識(shí),為了將學(xué)生的效率提上來(lái),老師會(huì)準(zhǔn)備一份教案,有了教案的支持可以讓同學(xué)聽的快樂(lè),老師自己也講的輕松。我們要如何寫好一份值得稱贊的幼兒園教案呢?經(jīng)過(guò)收集,小編整理了一元二次方程的解教案匯編10篇,僅供參考,歡迎大家閱讀。
一、教學(xué)目標(biāo)
【知識(shí)與技能】
理解并掌握一元二次方程求根公式的推導(dǎo)過(guò)程,能正確、熟練地運(yùn)用公式法解一元二次方程。
【過(guò)程與方法】
經(jīng)歷探究求根公式的過(guò)程,發(fā)展合情推理能力,提高運(yùn)算能力并養(yǎng)成良好的運(yùn)算習(xí)慣。
【情感、態(tài)度與價(jià)值觀】
通過(guò)公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動(dòng)中獲取成功的體驗(yàn)。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
用公式法解一元二次方程。
【教學(xué)難點(diǎn)】
一元二次方程求根公式的推導(dǎo)。
三、教學(xué)過(guò)程
(一)引入新課
復(fù)習(xí)回顧:用配方法解一元二次方程。
配方,得
(四)小結(jié)作業(yè)
小結(jié):引導(dǎo)學(xué)生做知識(shí)總結(jié):本節(jié)課學(xué)習(xí)了什么叫公式法,怎樣運(yùn)用公式法解一元二次方程。如何判斷一個(gè)方程是否有實(shí)數(shù)根?
作業(yè):課后練習(xí)題,試著用多種方法解答。
四、板書設(shè)計(jì)
略
知識(shí)點(diǎn):二元一次方程的概念及一般形式,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)、判別式、一元二次方程解法
重點(diǎn)、難點(diǎn):二元一次方程四種解法,直接開平方、配方法、公式法、因式分解法
教學(xué)形式:例題演示,加深印象!學(xué)完即用,鞏固記憶!你問(wèn)我答,有來(lái)有往!
大家下午好!我叫XXX,20XX年畢業(yè)于暨南大學(xué),學(xué)的行政管理,現(xiàn)在教的是初中數(shù)學(xué),希望能與大家有一個(gè)愉快的下午!
我們今天的課堂內(nèi)容是復(fù)習(xí)一元二次方程。首先請(qǐng)同學(xué)們看黑板上的這4個(gè)等式,請(qǐng)判斷等式是否是一元二次方程,如果是請(qǐng)說(shuō)出該一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)以及常數(shù)項(xiàng):
(4)3x -5x=3x 不是 整理式子得-5x=0所以為一元一次方程(追問(wèn)為什么) 好,同學(xué)們都回答得非常好!那么我們所說(shuō)的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!
一元二次方程的一般形式為:ax +bx+c=0 (a ≠0)其中,a 為二次項(xiàng)系數(shù)、b 為一次項(xiàng)系數(shù)、c 為常數(shù)項(xiàng)。記住,a 一定不為0,b 、c 都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時(shí)先將一元二次方程化為一般式! 至于一個(gè)一元二次方程有沒(méi)有根怎么判斷,有同學(xué)能告訴老師嗎?(沒(méi)有就自己講),好非常好!我們知道Δ是等于2-4ac 的,當(dāng)Δ>0時(shí),方程有2個(gè)不相同的實(shí)數(shù)根;當(dāng)Δ=0時(shí),方程有兩個(gè)相同的實(shí)數(shù)根;當(dāng)Δ
那說(shuō)到求方程的根我們究竟學(xué)了幾種求一元二次方程根的方法呢?我知道同學(xué)們肯定心里有答案,就讓老師為你們一一梳理~
遇到形如x =n的二元一次方程,可以直接使用開方法來(lái)求解。若n 0, 則x=±n 。同學(xué)們能明白嗎?
大家覺(jué)得直接開平方好不好用?簡(jiǎn)不簡(jiǎn)單?那大家肯定都想用直接開方法來(lái)做題,是吧?當(dāng)然,中考題簡(jiǎn)單也不至于這么簡(jiǎn)單~但是我們可以通過(guò)配方法來(lái)將方程往完全平方形式變化。配方法我們通過(guò)2道例題來(lái)鞏固一下:
簡(jiǎn)單的一眼看出來(lái)的:x -2x+1=0 (x-1)=0(讓同學(xué)回答)
大家能聽懂嗎?現(xiàn)在我們一起來(lái)做一道練習(xí)題,2min 時(shí)間,大家一起報(bào)個(gè)答案給我!
大家都會(huì)做嗎?還需要講解詳細(xì)步驟嗎?
(3)講完了直接開方法、配方法之后我們來(lái)講一個(gè)萬(wàn)能的公式法。只要知道abc ,沒(méi)有公式法求不出來(lái)的解,當(dāng)然啦,除非是無(wú)解~
首先,公式法里面的公式大家還記得嗎?
這個(gè)公式是怎么來(lái)的呢?有同學(xué)知道的嗎?就是將一般式配方法得到的x 的`表達(dá)式,大家記住,會(huì)用就可以了,如果有興趣可以課后試著用配方法進(jìn)行推導(dǎo),也歡迎課后找我探討~這個(gè)公式法用起來(lái)非常簡(jiǎn)單,一找數(shù)、二代入、三化簡(jiǎn)。 我們來(lái)做一道簡(jiǎn)單的例題:
帶入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
同學(xué)們你們解對(duì)了嗎?
使用公式法時(shí)要注意的點(diǎn):系數(shù)的符號(hào)要看準(zhǔn)、代入和化簡(jiǎn)要細(xì)心,不要馬失前蹄哈~
(4)今天的第四種解方程的方法叫因式分解法。因式分解大家會(huì)嗎?好那今天由我來(lái)帶大家一起見(jiàn)識(shí)一下因式分解的魅力!
簡(jiǎn)單來(lái)說(shuō),因式分解就是將多項(xiàng)式化為式子的乘積形式。
比如說(shuō)ab+ab 可以化成ab (1+a)的乘積形式。
那么對(duì)于二元一次方程,我們的目標(biāo)是要將其化成(mx+a)*(nx+b)=0 這樣就可以解出x=-a/m x=-b/n
則可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
同學(xué)們都能明白嗎?就是找出公因式,將多項(xiàng)式化為因式的乘積形式從而求解。 練習(xí)題:x -5x+6=0 x=2 x=3
好,復(fù)習(xí)完了二元一次方程我們熟知它的概念。只含有一個(gè)未知數(shù)且未知數(shù)項(xiàng)最高次數(shù)為2的等式,叫做二元一次方程。我們還要會(huì)找abc 系數(shù),會(huì)用Δ=b-4ac 來(lái)判別方程實(shí)根的情況。還需要熟悉四種方程的解法,這是中考的重點(diǎn)考察內(nèi)容。當(dāng)然,具體用哪一種解題方法就需要結(jié)合具體的題目來(lái)選擇了。如果形式簡(jiǎn)單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當(dāng)然每個(gè)人的習(xí)慣不一樣,熟悉的方法也不一樣,同學(xué)們可以自行選擇萬(wàn)無(wú)一失的方法,像老師不到萬(wàn)不得已絕對(duì)不用公式法,哈哈哈哈~好啦,上完這一個(gè)復(fù)習(xí)課希望大家都能有收獲!
本班有學(xué)生53人,數(shù)學(xué)課還比較喜歡,學(xué)習(xí)熱情也較高,課堂氣氛比較活躍。學(xué)生在學(xué)過(guò)一元一次方程的基礎(chǔ)上學(xué)習(xí),還是對(duì)方程有一定的認(rèn)識(shí)。所以老師放手讓學(xué)生自學(xué)、合作的探究方式來(lái)學(xué)習(xí)此課。但有極少部分學(xué)生較懶,學(xué)習(xí)習(xí)慣差,不愿思考問(wèn)題??傮w來(lái)說(shuō)學(xué)生喜歡動(dòng)手操作,喜歡小組合作的學(xué)習(xí)方式。
1. 通過(guò)生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問(wèn)題來(lái)激發(fā)學(xué)生的學(xué)習(xí)熱情。
2. 感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2. 使學(xué)生理解并能夠掌握一元二次方程的一般表達(dá)式以及各種特殊形式。
1. 通過(guò)設(shè)置問(wèn)題,建立數(shù)學(xué)模型,模仿一元一次方程的概念給一元二次方程下定義。
1.一元二次方程的概念及其一般形式和用一元二次方程有關(guān)概念解決問(wèn)題。
2.通過(guò)提出問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
情境創(chuàng)設(shè)(大屏幕投影教材24頁(yè)):要設(shè)計(jì)一座2米高的人體雕塑,使雕塑的上部(腰上部)與下部(腰下部)的高度比,等于下部與全部(全身)的高度比,雕塑的下部應(yīng)設(shè)計(jì)為多高?
X2=2(2-x)整理得X2+2x-4=0,這是什么方程,與以前學(xué)過(guò)的一元一次方程有什么不同,這節(jié)課我們就來(lái)學(xué)習(xí)它---------一元二次方程
1.問(wèn)題1(多媒體課件)有一塊長(zhǎng)方形鐵皮,長(zhǎng)100cm,寬50cm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,就能制作一個(gè)無(wú)蓋方盒。如果要制作的無(wú)蓋方盒的底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
如果假設(shè)切去的正方形邊長(zhǎng)為x,那么盒底的長(zhǎng)是________,寬是_____,根據(jù)方盒的底面積為3600cm2,得:_______.
老師點(diǎn)評(píng)并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
問(wèn)題2要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng)。根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,比賽組織者應(yīng)邀請(qǐng)多少個(gè)隊(duì)參賽?
單循環(huán)比賽是指就表示每個(gè)隊(duì)要和其他所有的隊(duì)都賽到了,如果有4個(gè)隊(duì)總共賽_______場(chǎng),5個(gè)隊(duì)呢?8個(gè)隊(duì)呢?n個(gè)隊(duì)呢?
同學(xué)們用基本線段法和定點(diǎn)發(fā)射法總結(jié)規(guī)律:
場(chǎng)數(shù)=(隊(duì)數(shù)-1)+(隊(duì)數(shù)-2)+(隊(duì)數(shù)-3)+。。。。。。+1
列方程得x(x-1)÷2=28?整理得X2-x=56解方程可以得出參賽隊(duì)數(shù)。
請(qǐng)口答下面問(wèn)題.
(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
(1)為什么a≠0?b和c能等于0嗎?(2)特殊式:ax2+bx=0,ax2+c=0
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號(hào)、移項(xiàng)、合并同類項(xiàng)等.
其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.
例2.(學(xué)生活動(dòng):請(qǐng)二至三位同學(xué)上臺(tái)演練)??將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
1.在下列方程中,一元二次方程的個(gè)數(shù)是(??).
①3x2+7=0??②ax2+bx+c=0??③(x-2)(x+5)=x2-1???④3x2-?=0
2.方程2x2=3(x-6)化為一般形式后二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為(?).
A.2,3,-6????B.2,-3,18????C.2,-3,6?????D.2,3,6
3.px2-3x+p2-q=0是關(guān)于x的一元二次方程,則(??).
A.p=1?????B.p>0?????C.p≠0?????D.p為任意實(shí)數(shù)
4.關(guān)于x的方程(m2-4)x2+mx-m=0是一元二次方程的條件是()
1.方程3x2-3=2x+1的二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為_________,常數(shù)項(xiàng)為_________.
2.關(guān)于x的方程(a-1)x2+3x=0是一元二次方程,則a的取值范圍是_________
3.關(guān)于x的方程(m+1)xm-1+mx-1=0是一元一次方程,則m=________
《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問(wèn)戶高、廣各幾何?”
大意是說(shuō):已知長(zhǎng)方形門的高比寬多6尺8寸,門的對(duì)角線長(zhǎng)1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.
程序?:1.學(xué)生自己獨(dú)立完成2.老師給組長(zhǎng)副組長(zhǎng)打分3.組長(zhǎng)給組員打分4.學(xué)生交流疑難雜癥5.學(xué)生總結(jié)易錯(cuò)點(diǎn)和方法6.老師作最后強(qiáng)調(diào)。
本節(jié)課要掌握:
(1)???????一元二次方程的概念;
(2)???????一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.
(4)???????利用一元二次方程解決實(shí)際生活問(wèn)題。
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
∴不論m取何值,該方程都是一元二次方程.
1. 知識(shí)結(jié)構(gòu):
(1)本節(jié)的重點(diǎn)是會(huì)用判別式判定根的情況.一元二次方程的根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也可以利用它進(jìn)一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,所以,它是本節(jié)課的重點(diǎn).
(2)本節(jié)的難點(diǎn)是一元二次方程根的三種情況的推導(dǎo).教科書首先將一元二次方程用配方法變形為 .因?yàn)?,所以方程右邊的符?hào)就由來(lái)確定,而方程左邊的不可能是一個(gè)負(fù)數(shù),因此,把分三種情況來(lái)討論方程根的情況.推導(dǎo)過(guò)程中利用了分類的思想方法,對(duì)于分類討論學(xué)生感覺(jué)到較難,老師應(yīng)該講明分類的基本思想。
新課引入前,作一個(gè)鋪墊:前面我們講了一元二次方程的解法,我們掌握了開平方法、公式法和因式分解法后,就可以解任何一個(gè)一元二次方程,但是,存在這樣一個(gè)問(wèn)題,并不是所有的一元二次方程都有解,我們可以通過(guò)把解求出來(lái),來(lái)解方程,也可以通過(guò)判定方程無(wú)解,來(lái)解方程,這樣我們就面臨著一個(gè)問(wèn)題,什么時(shí)候方程有解?什么時(shí)候方程無(wú)解?我們不解方程能不能判定根的情況?那就是我們本節(jié)所要研究的問(wèn)題.讓學(xué)生首先感覺(jué)到所要學(xué)習(xí)的知識(shí)并不突然,也顯露了本節(jié)課的重點(diǎn).
本節(jié)是根的判別式結(jié)論的推導(dǎo),比較抽象,為了便于學(xué)生理解,使用所提供的動(dòng)畫,有助于學(xué)生對(duì)所講內(nèi)容的理解,調(diào)動(dòng)學(xué)生主動(dòng)思維的積極性,活躍課堂氣氛,提高學(xué)習(xí)效率.
(3)本節(jié)在推導(dǎo)根的判別式的結(jié)論時(shí),利用了分類的思想,對(duì)于學(xué)生這是一個(gè)難點(diǎn),一定給學(xué)生講清楚分類的依據(jù),分類的基本思想,使學(xué)生對(duì)所得結(jié)論深信不疑.
1. 理解一元二次方程的根的判別式,并能用判別式判定根的情況;
2. 通過(guò)根的判別式的學(xué)習(xí),培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力;
3.通過(guò)根的情況的研究過(guò)程,讓學(xué)生深刻體會(huì)轉(zhuǎn)化和分類的思想方法.
3.解決辦法:(1)求判別式時(shí),應(yīng)先將方程化為一般形式,確定a、b、c。(2)利用判別式可以判定一元二次方程的存在性情況(共四種);方程有兩個(gè)實(shí)數(shù)根,方程有兩個(gè)不相等的實(shí)數(shù)根,方程有兩個(gè)相等的實(shí)數(shù)根,方程沒(méi)有實(shí)數(shù)根。
(1)平方根的性質(zhì)是什么?
問(wèn)題(1)為本節(jié)課結(jié)論的得出起到了一個(gè)很好的鋪墊作用。問(wèn)題(2)通過(guò)自己親身感受的根的情況,對(duì)本節(jié)課的結(jié)論的得出起到了一個(gè)推波助瀾的作用。
2.任何一個(gè)一元二次方程 用配方法將其變形為 ,因此對(duì)于被開方數(shù) 來(lái)說(shuō),只需研究 為如下幾種情況的方程的根。
(2)當(dāng) 時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,即 。
(3)當(dāng) 時(shí),方程沒(méi)有實(shí)數(shù)根。
3.①定義:把 叫做一元二次方程 的根的判別式,通常用符號(hào)“ ”表示。
②一元二次方程 。
當(dāng) 時(shí),有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng) 時(shí),有兩個(gè)相等的實(shí)數(shù)根;
當(dāng) 時(shí),沒(méi)有實(shí)數(shù)根。
反之亦然。
注意以下幾個(gè)問(wèn)題:
(1) 這一重要條件在這里起了“承上啟下”的作用,即對(duì)上式開平方,隨后有下面三種情況。正確得出三種情況的結(jié)論,需對(duì)平方根的概念有一個(gè)深刻的、正確的理解,所以,在課前進(jìn)行了鋪墊。在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類的思想方法。
(2)當(dāng) ,說(shuō)“方程 沒(méi)有實(shí)數(shù)根”比較好。有時(shí),也說(shuō)“方程無(wú)解”。這里的前提是“在實(shí)數(shù)范圍內(nèi)無(wú)解”,也就是方程無(wú)實(shí)數(shù)根的意思。
例1? 不解方程,判別下列方程的根的情況:
∴原方程有兩個(gè)不相等的實(shí)數(shù)根。
。
,
(1)當(dāng)b2-4ac> 0時(shí),_______________________
(2)當(dāng)b2-4ac= 0時(shí),_________________________
(3)當(dāng)b2-4ac< 0時(shí),________________________
(三)應(yīng)用新知:
1、不解方程判定下列一元二次方程根的情況。
(1)x2-x-6=0??????? b2-4ac=______????????? x1=_____???? x2=_____
(2)x2-2x=1??????? b2-4ac=______?????????? x1=_____???? x2=_____
(3)x2-2x+2=0?????? b2-4ac=______????????????? x1=_____???? x2=_____
2、根據(jù)根的情況,求字母系數(shù)的取值范圍。
例1:當(dāng)m取什么值時(shí),關(guān)于x的一元二次方程,2x2-(m+2)+2m=0有兩個(gè)相等的實(shí)數(shù)根?并求出方程的根。
(1)讀題分析:
A、二次項(xiàng)系數(shù)是什么????????????????????? a=_______
B、一次項(xiàng)系數(shù)是什么????????????????????? b=_______
C、常數(shù)項(xiàng)是什么???????????????????????????? c=_______
例2:說(shuō)明不論m取什么值時(shí),關(guān)于x的一元二次方程(x-1)(x-2)=m2,不論m取代的值都有幾個(gè)不相等的實(shí)根。
已知關(guān)于x的一元二次方程2x2-(2m+1)x+m=0的根的判別式是9,求m的值及方程的根。
(五)小結(jié):把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判別式,并會(huì)用它們解決一些實(shí)際問(wèn)題。
1、把例1、例2整理在作業(yè)本上。
2、有余力的同學(xué)把練習(xí)題整理在作業(yè)本。
四、教學(xué)后記:
1. 下列方程中是一元二次方程的是( ).
A.xy+2=1 B. C. x2=0 D.
2. 白云航空公司有若干個(gè)飛機(jī)場(chǎng),每?jī)蓚€(gè)飛機(jī)場(chǎng)之間都開辟一條航線,一共開辟了10條航線,則這個(gè)航空公司共有飛機(jī)場(chǎng)( )
3、關(guān)于x的一元二次方程kx2+3x-1=0有實(shí)數(shù)根,則k的取值范圍是( )
A、k≤ B、k≥ 且k≠0 C、k≥ D、k> 且k≠0
4.某班同學(xué)畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送1035張照片,如果全班有x名同學(xué),根據(jù)題意,列出方程為 ( )
A.x(x+1)=1035 B.x(x-1)=1035×2 C.x(x-1)=1035 D.2x(x+1)=1035
6、工廠技術(shù)革新,計(jì)劃兩年內(nèi)使成本下降51%,則平均每年下降百分率為( )
A.30% B.26.5% C.24.5% D.32%
7、如圖,菱形ABCD的邊長(zhǎng)是5,兩條對(duì)角線交于O點(diǎn),且AO、BO的長(zhǎng)分別是關(guān)于 的方程 的根,則 的值為 ( )
9、(山西省)請(qǐng)你寫出一個(gè)有一根為1的一元二次方程: .
10、一元二次方程3x2-23=-10x的二次項(xiàng)系數(shù)為: ,一次項(xiàng)系數(shù)為: ____ ,常數(shù)項(xiàng)為: ___
11、(20本溪)11.由于甲型H1N1流感(起初叫豬流感)的影響,在一個(gè)月內(nèi)豬肉價(jià)格兩次大幅下降.由原來(lái)每斤16元下調(diào)到每斤9元,求平均每次下調(diào)的百分率是多少?設(shè)平均每次下調(diào)的百分率為 ,則根據(jù)題意可列方程為 .
12、已知方程 的兩根平方和是5,則 =
13、已知x2+3x+5的值為11,則代數(shù)式3x2+9x+12的值為 .
14、已知m是方程 的一個(gè)根,則代數(shù)式 的值等于 .
15、設(shè) 是一個(gè)直角三角形兩條直角邊的長(zhǎng),且 ,則這個(gè)直角三角形的斜邊長(zhǎng)為
16、若方程x2+px+q=0的兩個(gè)根是-2和3,則p= q=
17、在實(shí)數(shù)范圍內(nèi)定義一種運(yùn)算“﹡”,其規(guī)則為a﹡b=a2-b2,根據(jù)這個(gè)規(guī)則,
18、等腰三角形的底和腰是方程x2-6x+8=0的兩根,則這個(gè)三角形的周長(zhǎng)是
22、已知關(guān)于x的一元二次方程 的一個(gè)根為0,求k的值和方程的另外一個(gè)根。
23、 在某次數(shù)字變換游戲中,我們把整數(shù)0,1,2,…,200稱為“舊數(shù)”,游戲的變換規(guī)則是:將舊數(shù)先平方,再除以100,所得到的數(shù)稱為“新數(shù)”。
(1)請(qǐng)把舊數(shù)60按照上述規(guī)則變成新數(shù);
(2)是否存在這樣的舊數(shù),經(jīng)過(guò)上述規(guī)則變換后,新數(shù)比舊數(shù)大75,如果存在,請(qǐng)求出這個(gè)舊數(shù);如果不存在,請(qǐng)說(shuō)明理由。
24、(2009年鄂州)關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍。
(2)是否存在實(shí)數(shù)k,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,說(shuō)明理由
25、 已知a、b、c為三角形三邊長(zhǎng),且方程b (x2-1)-2ax+c (x2+1)=0有兩個(gè)相等的實(shí)數(shù)根. 試判斷此三角形形狀,說(shuō)明理由.
26、一個(gè)兩位數(shù),十位上的數(shù)字比個(gè)位上的數(shù)字的平方小9,如果把個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào),得到的兩位數(shù)比原來(lái)的兩位數(shù)小27,求原來(lái)的這個(gè)兩位數(shù)
27、某商店將進(jìn)貨為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高商品售價(jià)減少銷售量的辦法增加利潤(rùn),如果這種商品按每件的銷售價(jià)每提高0.5元其銷售量就減少10件,問(wèn)應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤(rùn)為640元?
28、有一面積為150m2的長(zhǎng)方形雞場(chǎng),雞場(chǎng)的一邊靠墻(墻長(zhǎng)18 m),另三邊用竹籬笆圍成,如果竹籬笆的長(zhǎng)為35 m,求雞場(chǎng)的長(zhǎng)與寬各為多少?
29、(2009年寧波市)2009年4月7日,國(guó)務(wù)院公布了《醫(yī)藥衛(wèi)生體制改革近期重點(diǎn)實(shí)施方案(2009~》,某市政府決定2009年投入6000萬(wàn)元用于改善醫(yī)療衛(wèi)生服務(wù),比增加了1250萬(wàn)元.投入資金的服務(wù)對(duì)象包括“需方”(患者等)和“供方”(醫(yī)療衛(wèi)生機(jī)構(gòu)等),預(yù)計(jì)2009年投入“需方”的資金將比20提高30%,投入“供方”的資金將比年提高20%.
(1)該市政府2008年投入改善醫(yī)療衛(wèi)生服務(wù)的資金是多少萬(wàn)元?
(2)該市政府2009年投入“需方”和“供方”的資金各多少萬(wàn)元?
(3)該市政府預(yù)計(jì)20將有7260萬(wàn)元投入改善醫(yī)療衛(wèi)生服務(wù),若從2009~年每年的資金投入按相同的增長(zhǎng)率遞增,求2009~2011年的年增長(zhǎng)率.
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過(guò)一元二次方程的學(xué)習(xí),就可以對(duì)上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對(duì)數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對(duì)其他學(xué)科也有重要的意義。
九年義務(wù)教育大綱對(duì)這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對(duì)學(xué)生的理解和接受知識(shí)的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識(shí)目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過(guò)一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問(wèn)題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義的觀點(diǎn)。
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對(duì)概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對(duì)學(xué)生中存在的這些問(wèn)題,本節(jié)課突出對(duì)教學(xué)概念形成過(guò)程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問(wèn)題解決。
1、新課導(dǎo)入:
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問(wèn)題引出一元二次方程,可以幫助學(xué)生認(rèn)識(shí)到一元二次方程是來(lái)源于客觀需要的)
1、知識(shí)與技能目標(biāo):認(rèn)識(shí)一元二次方程,并能分析簡(jiǎn)單問(wèn)題中的數(shù)量關(guān)系列出一元二次方程。
2、過(guò)程與方法:學(xué)生通過(guò)觀察與模仿, 建立起對(duì)一元二次方程的感性認(rèn)識(shí),獲得對(duì)代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過(guò)程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識(shí)結(jié)合起來(lái),形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會(huì)將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
難點(diǎn):找對(duì)題目中的數(shù)量關(guān)系從而列出一元二次方程。
師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來(lái)看一看第二十二章的這張圖片,圖片上有一個(gè)銅雕塑,有哪位同學(xué)能告訴我這是誰(shuí)嗎?
師:對(duì),這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂(lè)于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個(gè)雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?
師:可是原來(lái)紀(jì)念館的工作人員在建造這座雕像的時(shí)候曾經(jīng)遇到了一個(gè)問(wèn)題,也就是圖片下面的這個(gè)問(wèn)題,同學(xué)們想不想為他們解決這個(gè)問(wèn)題呢?
師:同學(xué)們也都很樂(lè)于助人,好那我們看一看這個(gè)問(wèn)題是什么,然后帶著這個(gè)問(wèn)題開始我們今天的學(xué)習(xí)一元二次方程。
師:我們來(lái)看到這個(gè)題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用AC來(lái)表示上部,BC來(lái)表示下部先簡(jiǎn)單列一下這個(gè)比例關(guān)系,待會(huì)老師下去看看同學(xué)們的式子。
師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3. 通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
理解一元二次方程的定義:
是一元二次方程 的重要組成部分。方程 ,只有當(dāng) 時(shí),才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。
(2)條件是用“關(guān)于 的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于 的一元二次方程 ”,這時(shí)題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項(xiàng),且出現(xiàn)“關(guān)于 的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時(shí),它是一元一次方程 ;當(dāng) 時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):
引例:剪一塊面積是150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個(gè)問(wèn)題,就要求出鐵片的長(zhǎng)和寬。
2.這個(gè)問(wèn)題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。
深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?
1.從上面的引例我們有這樣一個(gè)感覺(jué):在解決日常生活的計(jì)算問(wèn)題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來(lái)。事實(shí)上初中代數(shù)研究的主要對(duì)象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對(duì)方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來(lái)觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來(lái)說(shuō)它與一元一次方程沒(méi)有什么區(qū)別、也就是說(shuō)一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的次數(shù)是幾。如果方程未知數(shù)的次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡(jiǎn)必須先化簡(jiǎn)、然后再查看這個(gè)方程未知數(shù)的次數(shù)是否是2。
提問(wèn):一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式
1).提問(wèn)a=0時(shí)方程還是一無(wú)二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項(xiàng)的名稱及a、b的系數(shù)名稱.
3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
1.說(shuō)出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說(shuō)出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握應(yīng)用因式分解的方法,會(huì)正確求一元二次方程的解。
【過(guò)程與方法】
通過(guò)利用因式分解法將一元二次方程轉(zhuǎn)化成兩個(gè)一元一次方程的過(guò)程,體會(huì)“等價(jià)轉(zhuǎn)化”“降次”的數(shù)學(xué)思想方法。
【情感態(tài)度價(jià)值觀】
通過(guò)探討一元二次方程的解法,體會(huì)“降次”化歸的思想,逐步養(yǎng)成主動(dòng)探究的精神與積極參與的意識(shí)。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
運(yùn)用因式分解法求解一元二次方程。
【教學(xué)難點(diǎn)】
發(fā)現(xiàn)與理解分解因式的方法。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
復(fù)習(xí)回顧:和學(xué)生一起回憶平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
問(wèn)題1:一個(gè)數(shù)的平方與這個(gè)數(shù)的3倍有可能相等嗎?如果相等,這個(gè)數(shù)是幾?你是怎樣求出來(lái)的?
學(xué)生小組討論,探究后,展示三種做法。
問(wèn)題:小穎用的什么法?——公式法
小明的解法對(duì)嗎?為什么?——違背了等式的性質(zhì),x可能是零。
小亮的解法對(duì)嗎?其依據(jù)是什么——兩個(gè)數(shù)相乘,如果積等于零,那么這兩個(gè)數(shù)中至少有一個(gè)為零。
問(wèn)題2:學(xué)生探討哪種方法對(duì),哪種方法錯(cuò);錯(cuò)的原因在哪?你會(huì)用哪種方法簡(jiǎn)便]
師引導(dǎo)學(xué)生得出結(jié)論:
如果a·b=0,那么a=0或b=0
(如果兩個(gè)因式的積為零,則至少有一個(gè)因式為零,反之,如果兩個(gè)因式有一個(gè)等于零,它們的積也就等于零。)
“或”有下列三層含義
①a=0且b≠0②a≠0且b=0③a=0且b=0
問(wèn)題3:
(1)什么樣的一元二次方程可以用因式分解法來(lái)解?
(2)用因式分解法解一元二次方程,其關(guān)鍵是什么?
(3)用因式分解法解一元二次方程的理論依據(jù)是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當(dāng)一元二次方程的一邊是0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。
老師提示:
1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;
2.關(guān)鍵是熟練掌握因式分解的知識(shí);
3.理論依舊是“如果兩個(gè)因式的積等于零,那么至少有一個(gè)因式等于零。”
(三)鞏固提高
1.用分解因式法解下列方程嗎?
總結(jié):右化零,左分解,兩因式,各求解。
(四)小結(jié)作業(yè)
用因式分解法求解一元二次方程的步驟:
1.方程化為一般形式;
2.方程左邊因式分解;
3.至少一個(gè)一次因式等于零得到兩個(gè)一元一次方程;
4.兩個(gè)一元一次方程的解就是原方程的解。
一、出示學(xué)習(xí)目標(biāo):
1.繼續(xù)感受用一元二次方程解決實(shí)際問(wèn)題的過(guò)程;
2.通過(guò)自學(xué)探究掌握裁邊分割問(wèn)題。
1.閱讀探究3并進(jìn)行填空;
2.完成P48的思考并掌握裁邊分割問(wèn)題的特點(diǎn);
3.在理解的基礎(chǔ)上完成P48-49第8、9題(不精確,只留根號(hào)即可)。
探究3:要設(shè)計(jì)一本書的封面,封面長(zhǎng)27cm,寬21cm,正中央是一個(gè)與整個(gè)封面長(zhǎng)寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(精確到0.1cm)?
分析:封面的長(zhǎng)寬之比為27﹕21=9﹕7,中央矩形的長(zhǎng)寬之比也應(yīng)是9﹕7,則上下邊襯與左右邊襯的寬度之比是。9﹕7
設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:
由中下層學(xué)生口答書中填空,老師再給予補(bǔ)充。
9.如圖,要設(shè)計(jì)一幅寬20m,長(zhǎng)30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計(jì)彩條的寬帶?(討論用多種方法列方程比較)
三、當(dāng)堂訓(xùn)練:
1.如圖,在一幅長(zhǎng)90cm,寬40cm的風(fēng)景畫四周鑲上一條寬度相同的金色紙邊,制成一幅掛畫.如果要求風(fēng)景畫的面積是整個(gè)掛畫面積的72%,那么金邊的寬應(yīng)是多少?
2.要設(shè)計(jì)一個(gè)等腰梯形的花壇,上底長(zhǎng)100m,下底長(zhǎng)180m。上下底相距80m,在兩腰中點(diǎn)連線出有一橫向甬道,上下兩底之見(jiàn)有兩條縱向的甬道,各甬道寬度相等,甬道的面積是梯形面積的六分之一,甬道的寬應(yīng)是多少?
一、教材分析
1、教材的地位和作用
一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過(guò)一元二次方程的學(xué)習(xí),就可以對(duì)上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對(duì)數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對(duì)其他學(xué)科也有重要的意義。
2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)
九年義務(wù)教育大綱對(duì)這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對(duì)學(xué)生的理解和接受知識(shí)的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
知識(shí)目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標(biāo):通過(guò)一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問(wèn)題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義的觀點(diǎn)。
3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)
“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
二、教材處理
在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對(duì)概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對(duì)學(xué)生中存在的這些問(wèn)題,本節(jié)課突出對(duì)教學(xué)概念形成過(guò)程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
三、教學(xué)方法和學(xué)法
教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問(wèn)題解決。
四、教學(xué)手段
采用投影儀
五、教學(xué)程序
1、新課導(dǎo)入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))
課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問(wèn)題引出一元二次方程,可以幫助學(xué)生認(rèn)識(shí)到一元二次方程是來(lái)源于客觀需要的)
設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程
幼兒教師教育網(wǎng)的幼兒園教案頻道為您編輯的《一元二次方程的解教案匯編10篇》內(nèi)容,希望能幫到您!同時(shí)我們的一元二次方程教案專題還有需要您想要的內(nèi)容,歡迎您訪問(wèn)!
相關(guān)推薦
編輯現(xiàn)在向你推薦解一元一次方程課件教案。在給學(xué)生上課之前老師早早準(zhǔn)備好教案課件,而現(xiàn)在又到了寫課件的時(shí)候了。?學(xué)生反應(yīng)可以幫助教師制定更適合學(xué)生的教學(xué)計(jì)劃。歡迎大家閱讀,希望對(duì)大家有所幫助!...
敬讀閱讀幼兒教師教育網(wǎng)的編輯整理的解一元一次方程教案。教案是老師上課之前需要備好的課件,因此老師會(huì)仔細(xì)規(guī)劃每份教案課件重點(diǎn)難點(diǎn)。寫好教案,才能營(yíng)造完整課堂教學(xué)。歡迎大家借鑒與參考,希望對(duì)大家有所幫助!...
我們常說(shuō),機(jī)會(huì)是留給有準(zhǔn)備的人。當(dāng)幼兒園教師的工作遇到難題時(shí),我們經(jīng)常會(huì)用提前準(zhǔn)備好的資料進(jìn)行參考。資料包含著人類在社會(huì)實(shí)踐,科學(xué)實(shí)驗(yàn)和研究過(guò)程中所匯集的經(jīng)驗(yàn)。參考資料會(huì)讓未來(lái)的學(xué)習(xí)或者工作做得更好!你知不知道我們常見(jiàn)的幼師資料有哪些呢?為了讓你在使用時(shí)更加簡(jiǎn)單方便,下面是小編整理的“一元二次方程課...
寫教案是教師工作中的重要一環(huán)。教案可以提升自主學(xué)習(xí)和競(jìng)爭(zhēng)意識(shí),他們團(tuán)結(jié)協(xié)作、勇敢頑強(qiáng)的意志品質(zhì)也得到了相應(yīng)的發(fā)展,我們?nèi)绾尾拍軐懗龇蠈?shí)際情況的教案呢?或許你需要"一元一次方程說(shuō)課稿"這樣的內(nèi)容,請(qǐng)閱讀,或許對(duì)你有所幫助!...
最新更新