幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

等比數(shù)列教案范文

發(fā)布時間:2023-12-02

等比數(shù)列教案。

教案課件也是教師工作的一部分,需要我們認真對待。編寫教案課件的內(nèi)容應(yīng)具備科學(xué)性和可操作性,你是否為此而困擾呢?為了讓您滿意,我特別準備了一篇“等比數(shù)列教案”,如果覺得對你有幫助,請分享給你的朋友和家人們!

等比數(shù)列教案(篇1)

一、教材分析

1、從在教材中的地位與作用來看

《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

2、從學(xué)生認知角度看

從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3、學(xué)情分析

教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

4、重點、難點

教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。

教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。

公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。

二、目標分析

知識與技能目標:

理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

過程與方法目標:

通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態(tài)度價值觀:

通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

三、過程分析

學(xué)生是認知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:

1、創(chuàng)設(shè)情境,提出問題

在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。

此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆、

2、師生互動,探究問題

在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?

探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。

經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

3、類比聯(lián)想,解決問題

這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo)。

設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。

對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)

再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

4、討論交流,延伸拓展

在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,

那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

設(shè)計意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個讓學(xué)生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進作用、

5、變式訓(xùn)練,深化認識

首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進行評價,然后師生共同進行總結(jié)。

設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學(xué)生新的數(shù)學(xué)認知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。

6、例題講解,形成技能

設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進行分類討論的數(shù)學(xué)思想。

7、總結(jié)歸納,加深理解

以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。

設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達能力,歸納概括能力。

8、故事結(jié)束,首尾呼應(yīng)

最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。

設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

9、課后作業(yè),分層練習(xí)

必做:P129練習(xí)1、2、3、4

選作:

(2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

四、教法分析

對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。

利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。

五、評價分析

本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

等比數(shù)列教案(篇2)

一、大綱與教材

等比數(shù)列前n項和一節(jié)是人教社高中數(shù)學(xué)必修教材試驗修訂本第一冊第三章第五節(jié)的內(nèi)容,教學(xué)對象為高一學(xué)生,教學(xué)時數(shù)2課時。

第三章《數(shù)列》是高中數(shù)學(xué)的重要內(nèi)容之一,之所以在新大綱里保留下來,這是由其在整個高中數(shù)學(xué)領(lǐng)域里的重要地位和作用決定的。

1、數(shù)列有著廣泛的實際應(yīng)用。例如產(chǎn)品的規(guī)格設(shè)計、儲蓄、分期付款的有關(guān)計算等。bet5874.com

2、數(shù)列有著承前啟后的作用。數(shù)列是函數(shù)的延續(xù),它實質(zhì)上是一種特殊的函數(shù);學(xué)習(xí)數(shù)列又為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容打下基礎(chǔ)。

3、數(shù)列是培養(yǎng)提高學(xué)生思維能力的好題材。學(xué)習(xí)數(shù)列要經(jīng)常觀察、分析、猜想,還要綜合運用前面的知識解決數(shù)列中的一些問題,這些都有利于學(xué)生數(shù)學(xué)能力的提高。

本節(jié)課既是本章的重點,同時也是教材的重點。等比數(shù)列前n項和前面承接了數(shù)列的定義、等差數(shù)列的知識內(nèi)容,又是后面學(xué)習(xí)數(shù)列求和、數(shù)列極限的基礎(chǔ)。

本節(jié)的重點是等比數(shù)列前n項和公式及應(yīng)用,難點是公式的推導(dǎo)。

二、教學(xué)目標

1、知識目標:理解等比數(shù)列前n項和公式的推導(dǎo)方法,掌握等比數(shù)列前n項和公式及應(yīng)用。

2、能力目標:培養(yǎng)學(xué)生觀察問題、思考問題的能力,并能靈活運用基本概念分析問題解決問題的能力,鍛煉數(shù)學(xué)思維能力。

3、思想目標:培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,鍛煉學(xué)生遇到困難不氣餒的堅強意志和勇于創(chuàng)新的精神。

三、教學(xué)程序設(shè)計

1、導(dǎo)言:

本節(jié)課是由印度國王西拉謨與國際象棋發(fā)明家的故事引入的,發(fā)明者要國王在他的棋盤上的64格中的第 1格放入1粒麥粒,第2格放入2粒麥粒,第3格放入4粒麥粒,第4格放入8粒麥?!瓎枒?yīng)給發(fā)明家多少粒麥粒?

這樣引入課題有以下三點好處:

(1)利用學(xué)生求知好奇心理,以一個小故事為切入點,便于調(diào)動學(xué)生學(xué)習(xí)本節(jié)課的趣味性和積極性。

(2)故事內(nèi)容緊扣本節(jié)課教學(xué)內(nèi)容的主題與重點。

(3)有利于知識的遷移,使學(xué)生明確知識的現(xiàn)實應(yīng)用性。

2、講授新課:

本節(jié)課有兩項主要內(nèi)容,等比數(shù)列的前n項和公式的推導(dǎo)和等比數(shù)列的前n項和公式及應(yīng)用。

等比數(shù)列的前n項和公式的推導(dǎo)是本節(jié)課的難點。

依據(jù)如下:

(1)從認知領(lǐng)域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識。

(2) 從學(xué)科知識上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。

(3) 從心理學(xué)上講,學(xué)生對這項學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識薄弱,不易理解。

突破難點方法:

(1)明確難點、分解難點,采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識切入 ,淺化知識內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的`總數(shù)為 ,然后引導(dǎo)學(xué)生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有 ,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和 ……+ 的關(guān)鍵也應(yīng)是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式 ,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。

(2)值得一提的是公式的證明還有兩種方法:

方法二:由等比數(shù)列的定義得: 運用連比定理,

后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。

等比數(shù)列前n項和公式及應(yīng)用是本節(jié)課的重點內(nèi)容。

依據(jù)如下:

(1)新大綱中有較高層次的要求。

(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。

(3)這項知識內(nèi)容有廣泛的實際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。

突出重點方法:

(1)明確重點。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運用比較法來突出公式的內(nèi)容(彩色粉筆板書): ,強調(diào)公式的應(yīng)用范圍: 中可知三求二。

(2)運用糾錯法對公式中學(xué)生容易出錯的地方,即公式的條件 ,以精練的語言給予強調(diào),并指出q=1時, 。再有就是有些數(shù)列求和的項數(shù)易錯,例如 的項數(shù)是n+1而不是n。

(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實際應(yīng)用來突出這一重點。對應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。

四、習(xí)題訓(xùn)練

本節(jié)課設(shè)置如下兩種類型的習(xí)題:

1. 中知三求二的解答題;

2.實際應(yīng)用題.

這樣設(shè)置主要依據(jù):

(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標與任務(wù)及本節(jié)課的重點、難點有相對應(yīng)的匹配關(guān)系。

(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題 。

(3)應(yīng)用題比較切合對智力技能進行檢測,有利于數(shù)學(xué)能力的提高。同時,它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動性,。

五、策略、方法與手段

根據(jù)高一學(xué)生心理特點、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡稱“例—規(guī)”法。

案例為淺層次要求,使學(xué)生有概括印象。

公式為中層次要求,由淺入深,重難點集中推導(dǎo)講解,便于突破。

應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗證本節(jié)教學(xué)目標的落實。

其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識,舉一反三。

在這三步教學(xué)中,以啟發(fā)性強的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實好教學(xué)任務(wù)。

六、個人見解

在提倡教育改革的今天,對學(xué)生進行思維技能培養(yǎng)已成了我們非常重要的一項教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國范圍內(nèi)展開,等比數(shù)列就是一個進行研究性學(xué)習(xí)的好題材。在我們學(xué)??梢园凑誌ntel未來教育計劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團結(jié)協(xié)作的精神。

等比數(shù)列教案(篇3)

本課是“等比數(shù)列的前n項和”的第一課時,是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),與函數(shù)等知識有著密切的聯(lián)系,也是以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等的基礎(chǔ)。本節(jié)的'有助于提升學(xué)生的創(chuàng)新思維和探索精神,其中充分利用數(shù)學(xué)文化背境故事引入課題,也是培養(yǎng)學(xué)生應(yīng)用意識和數(shù)學(xué)能力的良好載體。

1.對教材的處理。首先借助數(shù)學(xué)文化背境提出問題,將學(xué)生帶入了求棋盤麥??倲?shù)的思考之中。然后引導(dǎo)學(xué)生分析數(shù)學(xué)現(xiàn)象,師生互動,設(shè)計五個問題層層深入,剖析了錯位相減法中減的妙用,使學(xué)生容易接受為什么要錯位相減,經(jīng)過繁難的計算之后,突然發(fā)現(xiàn)了錯位相減法,讓學(xué)生感受到這種方法的神奇。從而得出等比數(shù)列前n項和公式,再對公式進行簡單應(yīng)用,深化理解,最后總結(jié)歸納,回到故事結(jié)束,首尾呼應(yīng),把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

2.設(shè)計思想是。本節(jié)課立足課本,著力挖掘,層次分明。充分體現(xiàn)以學(xué)生發(fā)展為本,遵循學(xué)生的認知規(guī)律。如本節(jié)課例題的設(shè)計,先通過精講一題(例1),使學(xué)生既鞏固了知識,又形成了技能;通過例題講解(例2),進一步滲透分類討論的思想,培養(yǎng)分類討論的思想和思維的縝密性;再有設(shè)計選作思考題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”體現(xiàn)數(shù)學(xué)的文化價值。在教學(xué)思想上既注重知識形成過程的教學(xué),還注重了學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

3.不足之處。本節(jié)雖然以數(shù)學(xué)文化背景的故事為引例來激發(fā)學(xué)生的學(xué)習(xí)興趣,然而卻在求和公式的證明中以“可發(fā)現(xiàn),如果式子兩邊乘以公比…”一筆帶過,這個“發(fā)現(xiàn)”卻不是大多學(xué)生能做到的,他們只能驚嘆于解法的奇妙,從而求知欲卻會因其“技巧性太強”而逐步消退。因此如何在有趣的數(shù)學(xué)文化背景下進一步拓展學(xué)生的視野,使數(shù)學(xué)知識的發(fā)生及形成更為自然,更能貼近學(xué)生的認知特征,這是我后面需要改進的方向。

總之,這節(jié)課收獲多多,也意識到自身的不足,今后我一定要揚長避短,不斷充實自己,爭取更大的進步。

等比數(shù)列教案(篇4)

知識目標:使學(xué)生掌握等比數(shù)列的定義及通項公式,發(fā)現(xiàn)等比數(shù)列的一些簡單性質(zhì),并能運用定義及通項公式解決一些實際問題。

能力目標:培養(yǎng)運用歸納類比的方法發(fā)現(xiàn)問題并解決問題的能力及運用方程的思想的計算能力。

德育目標:培養(yǎng)積極動腦的學(xué)習(xí)作風(fēng),在數(shù)學(xué)觀念上增強應(yīng)用意識,在個性品質(zhì)上培養(yǎng)學(xué)習(xí)興趣。

本節(jié)的重點是等比數(shù)列的定義、通項公式及其簡單應(yīng)用,其解決辦法是歸納、類比。

本節(jié)難點是對等比數(shù)列定義及通項公式的深刻理解,突破難點的關(guān)鍵在于緊扣定義,另外,靈活應(yīng)用定義、公式、性質(zhì)解決一些相關(guān)問題也是一個難點。

為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法,讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比歸納的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中,力求把握好以下幾點:

①通過實例,讓學(xué)生發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。②營造*的教學(xué)氛圍,把握好師生的情感交流,使學(xué)生參與教學(xué)全過程,讓學(xué)生唱主角,老師任導(dǎo)演。③力求反饋的全面性、及時性。通過精心設(shè)計的提問,讓學(xué)生思維動起來,針對學(xué)生回答的問題,老師進行適當(dāng)?shù)恼{(diào)控。④給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察、分析、類比得出結(jié)果,老師點評,逐步養(yǎng)成科學(xué)嚴謹?shù)膶W(xué)習(xí)態(tài)度,提高學(xué)生的推理能力。⑤以啟迪思維為核心,啟發(fā)有度,留有余地,導(dǎo)而弗牽,牽而弗達。這樣做增加了學(xué)生的參與機會,增強學(xué)生的參與意識,教給學(xué)生獲取知識的途徑和思考問題的方法,使學(xué)生真正成為教學(xué)的主體,使學(xué)生學(xué)會學(xué)習(xí),提高學(xué)生學(xué)習(xí)的興趣和能力。

(4)等差中項:如果a、A、b成等差數(shù)列,那么A叫做a與b的等差中項。

說明:通過復(fù)習(xí)等差數(shù)列的相關(guān)知識,類比學(xué)習(xí)本節(jié)課的內(nèi)容,用熟知的等差數(shù)列內(nèi)容來分散本節(jié)課的難點。

本章引言中關(guān)于在國際象棋棋盤各格子里放麥粒的問題中,各個格子的麥粒數(shù)依次是:

說明:引導(dǎo)學(xué)生通過“觀察、分析、歸納”,類比等差數(shù)列的定義得出等比數(shù)列的定義,為進一步理解定義,給出下面的問題:

判定以下數(shù)列是否為等比數(shù)列,若是寫出公比q,若不是,說出理由,然后回答下面問題。

—1,—2,—4,—8…

—1,2,—4,8…

—1,—1,—1,—1…

1,0,1,0…

提出問題:(1)公比q能否為零?為什么?首項a1呢?

(2)公比q=1時是什么數(shù)列?

(3)q>0是遞增數(shù)列嗎?q

說明:通過師生問答,充分調(diào)動學(xué)生學(xué)習(xí)的主動性及學(xué)習(xí)熱情,活躍課堂氣氛,同時培養(yǎng)學(xué)生的口頭表達能力和臨場應(yīng)變能力。另外通過趣味性的問題,來提高學(xué)生的學(xué)習(xí)興趣。激發(fā)學(xué)生發(fā)現(xiàn)等比數(shù)列的定義及其通項公式的強烈*。

讓學(xué)生回顧等差數(shù)列通項公式的推導(dǎo)過程,引導(dǎo)推出等比數(shù)列的通項公式。

說明:學(xué)生從方法一中學(xué)會從特殊到一般的方法,并從次數(shù)中去發(fā)現(xiàn)規(guī)律,以培養(yǎng)學(xué)生的觀察能力;另外回憶等差數(shù)列的特點,并類比到等比數(shù)列中來,培養(yǎng)學(xué)生的類比能力及將新知識轉(zhuǎn)化到舊知識的能力。方法二是讓學(xué)生掌握“疊乘”的思路。

等差數(shù)列的圖像可以看成是直線上一群孤立的點構(gòu)成的,觀察等比數(shù)列的通項公式,你能得出什么結(jié)果?它的圖像如何?

變式2、等比數(shù)列{an}中,a2=2,a9=32,求q、

說明:例1的目的是讓學(xué)生熟悉公式并應(yīng)用于實際,例2及變式是讓學(xué)生明白,公式中a1,q,n,an四個量中,知道任意三個即可求另一個。并從這些題中掌握等比數(shù)列運算中常規(guī)的消元方法。

類比等差數(shù)列的性質(zhì),猜測等比數(shù)列的性質(zhì),然后引導(dǎo)推證。

例4(見教材例3)已知數(shù)列{an}、{bn}是項數(shù)相同的等比數(shù)列,求證:{an·bn}是等比數(shù)列。

為了讓學(xué)生將獲得的知識進一步條理化,系統(tǒng)化,同時培養(yǎng)學(xué)生的歸納總結(jié)能力及練習(xí)后進行再認識的能力,教師引導(dǎo)學(xué)生對本節(jié)課進行總結(jié)。

2、等比數(shù)列的通項公式,每個字母代表的含義。

等比數(shù)列教案(篇5)

教學(xué)目標

熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。

教學(xué)重難點

熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。

教學(xué)過程

【復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實際問題的能力,強化應(yīng)用儀式。

【方法規(guī)律】應(yīng)用數(shù)列知識界實際應(yīng)用問題的關(guān)鍵是通過對實際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項,公差或公比等基本元素,然后設(shè)計合理的計算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。

一、基礎(chǔ)訓(xùn)練

1、某種細菌在培養(yǎng)過程中,每20分鐘x一次一個x為兩個,經(jīng)過3小時,這種細菌由1個可繁殖成

A、511B、512C、1023D、1024

2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為

A、B、

C、D、

二、典型例題

例1:某人每期期初到銀行存入一定金額A,每期利率為p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,問到第n期期末的本金和是多少?

評析:此例來自一種常見的存款叫做零存整取。存款的方式為每月的某日存入一定的金額,這是零存,一定時期到期,可以提出全部本金及利息,這是整取。計算本利和就是本例所用的有窮等差數(shù)列求和的`方法。用實際問題列出就是:本利和=每期存入的金額[存期+1/2存期存期+1利率]

例2:某人從1999到20xx年間,每年6月1日都到銀行存入m元的一年定期儲蓄,若每年利率q保持不變,且每年到期的存款本息均自動轉(zhuǎn)為新的一年定期,到20xx年6月1日,此人到銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是多少元?

例3、某地區(qū)位于沙漠邊緣,人與自然進行長期頑強的斗爭,到1999年底全地區(qū)的綠化率已達到30%,從20xx年開始,每年將出現(xiàn)以下的變化:原有沙漠面積的16%將栽上樹,改造為綠洲,同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?。問?jīng)過多少年的努力才能使全縣的綠洲面積超過60%。lg2=0.3

例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。

等比數(shù)列教案(篇6)

一、教材分析:

等比數(shù)列的前n項和是高中數(shù)學(xué)必修五第二章第3、3節(jié)的內(nèi)容。它是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)。這部分內(nèi)容授課時間2課時,本節(jié)課作為第一課時,重在研究等比數(shù)列的前n項和公式的推導(dǎo)及簡單應(yīng)用,教學(xué)中注重公式的形成推導(dǎo)過程并充分揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系。意在培養(yǎng)學(xué)生類比分析、分類討論、歸納推理、演繹推理等數(shù)學(xué)思想。在高考中占有重要地位。

二、教學(xué)目標

根據(jù)上述教學(xué)內(nèi)容的地位和作用,結(jié)合學(xué)生的認知水平和年齡特點,確定本節(jié)課的教學(xué)目標如下:

1、知識與技能:理解等比數(shù)列的前n項和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題。

2、過程與方法:通過公式的推導(dǎo)過程,提高學(xué)生的建模意識及探究問題、類比分析與解決問題的能力,培養(yǎng)學(xué)生從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

3、情感與態(tài)度:通過自主探究,合作交流,激發(fā)學(xué)生的求知欲,體驗探索的艱辛,體味成功的喜悅,感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學(xué)的嚴謹美。

三、教學(xué)重點和難點

重點:等比數(shù)列的前項和公式的推導(dǎo)及其簡單應(yīng)用。

難點:等比數(shù)列的前項和公式的推導(dǎo)。

重難點確定的依據(jù):從教材體系來看,它為后繼學(xué)習(xí)提供了知識基礎(chǔ),具有承上啟下的作用;從知識本身特點來看,等比數(shù)列前n項和公式的推導(dǎo)方法和等差數(shù)列的的前n項和公式的推導(dǎo)方法可比性低,無法用類比的方法進行,它需要對等比數(shù)列的概念和性質(zhì)能充分理解并融會貫通;從學(xué)生認知水平來看,學(xué)生的探究能力和用數(shù)學(xué)語言交流的能力還有待提高。

四、教法學(xué)法分析

通過創(chuàng)設(shè)問題情境,組織學(xué)生討論,讓學(xué)生在嘗試探索中不斷地發(fā)現(xiàn)問題,以激發(fā)學(xué)生的求知欲,并在過程中獲得自信心和成功感。強調(diào)知識的嚴謹性的同時重知識的形成過程,

五、教學(xué)過程

(一)創(chuàng)設(shè)情境,引入新知

從故事入手:傳說,波斯國王下令要獎賞國際象棋的`發(fā)明者,發(fā)明者對國王說,在棋盤的第一格內(nèi)放上一粒麥子,在第二格內(nèi)放兩粒麥子,第三格內(nèi)放4粒,第四格內(nèi)放8米,……按這樣的規(guī)律放滿64格棋盤格。結(jié)果是國王傾盡國家財力還不夠支付。同學(xué)們,這幾粒麥子,怎能會讓國王賠上整個國家的財力?

關(guān)鍵就在于計算麥粒的總數(shù)。很明顯,這是一個以1為首項,以2為公比的等比數(shù)列前64項和的問題,即如何計算1+2+22+……+263?

(二)師生討論、探究新知

總結(jié)歸納:當(dāng)q=1時,Sn=na1

當(dāng)q≠1時,

公式說明:①對等比數(shù)列{an}而言,a1,an,Sn,n,q知三可求二②運用公式時要根據(jù)條件選取適當(dāng)?shù)墓剑貏e注意的是,在公比不知道的情況下要分類討論;③錯位相減的思想方法。

(三)例題講解,形成技能

例1:等比數(shù)列{an}中,

①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

③已知a1=2,S3=26,求q。

通過例題一,滲透知三求二的思想。

練習(xí):求等比數(shù)列1,-1/2,1/4,-1/8,…,-1/512的各項的和。

例2、等比數(shù)列{an}中,已知a1=3,S3=9,求q,an。

練習(xí):等比數(shù)列{an}中,若S3=7/2,S6=63/2,求an、S9。

通過練習(xí)得出等比數(shù)列前項和的一個性質(zhì):成等比數(shù)列。

例3:(1)求數(shù)列1+1/2,2+1/4,3+1/8,… n+,…的前n項和。

首先由學(xué)生分析思路,觀察出這組數(shù)列的特點,它既不是等差數(shù)列,也不是等比數(shù)列,而是等差加等比。歸納出這類數(shù)列求和的方法。

思考:求和:1+a+a2+a3+…+an

(四)課堂小結(jié)

以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。

『設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達能力,歸納概括能力?!?/p>

六、板書設(shè)計

七、課后記

本節(jié)課的設(shè)計體現(xiàn)呢“以學(xué)生為主體,教師是課堂活動的組織者、引導(dǎo)者和參與者”的現(xiàn)代教育理念。在教學(xué)的每一個環(huán)節(jié)中軍設(shè)計了問題,始終以教師提出問題,引導(dǎo)學(xué)生解決問題的方式進行,讓課堂活動變得生動而愉悅。

等比數(shù)列教案(篇7)

教學(xué)目標

1.通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式.

2.使學(xué)生進一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴謹?shù)目茖W(xué)態(tài)度.

教學(xué)重點,難點

重點、難點是等比數(shù)列的定義的歸納及通項公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)

①-2,1,4,7,10,13,16,19,

②8,16,32,64,128,256,

③1,1,1,1,1,1,1,

④243,81,27,9,3,1,

⑤31,29,27,25,23,21,19,

⑥1,-1,1,-1,1,-1,1,-1,

⑦1,-10,100,-1000,10000,-100000,

⑧0,0,0,0,0,0,0,

由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列).

二、講解新課請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)。

這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列等比數(shù)列. (這里播放變形蟲分裂的多媒體軟件的第一步)

判斷下列數(shù)列是否為等比數(shù)列?若是,找出公比;不是,請說明理由、

(1) 1, 4, 16, 32、

(2) 0, 2, 4, 6, 8.

(3) 1,-10,100,-1000,10000、

(4) 81, 27, 9, 3, 1.

(5) a, a, a, a, a.

講解例二,進一步熟悉定義,根據(jù)定義求數(shù)列未知項。最后的小例一為了由利

用定義的求解轉(zhuǎn)到利用定義證明,二為了讓學(xué)生發(fā)現(xiàn)等比數(shù)列隔項同號的規(guī)律。 例題二

求出下列等比數(shù)列中的未知項:

(1) 2, a, 8;

(2) -4, b, c, ?;

? 已知數(shù)列 2, x, d, y,8、是等比數(shù)列

①證明數(shù)列2, d, 8.仍是等比數(shù)列、

②求未知項d.

通過兩道例題的講解,讓學(xué)生有個緩沖,做個鞏固練習(xí)。當(dāng)然此練習(xí)的`安排,

也是為了進一步挖掘等比數(shù)列定義的本質(zhì),辨析找尋等差數(shù)列與等比數(shù)列的關(guān)系,將具體問題再推廣到一般,并要求學(xué)生理解并掌握等比數(shù)列的判斷證明方法。

練習(xí)

判斷下列數(shù)列是等差數(shù)列還是等比數(shù)列?

(1) 22 , 2 , 1 , 2-1, 2-2 .

(2) 3 , 34 , 37, 310 .

引申:已知數(shù)列{an}是等差數(shù)列,而bn?2n

證明數(shù)列{bn}是等比數(shù)列.

由最后一例的證明,說明給出通項公式后可由定義判斷該數(shù)列是否為等比數(shù)

列。反過來若數(shù)列已經(jīng)是等比數(shù)列了,能否由定義導(dǎo)出數(shù)列通項公式呢?為下節(jié)課做鋪墊。

【課堂小結(jié)】

由學(xué)生通過一堂課的學(xué)習(xí),做個簡單的歸納小結(jié)。

1理解.等比數(shù)列的定義,判斷或證明數(shù)列是否為等比數(shù)列要用定義判斷

2.等比數(shù)列公比q≠0,任意一項都不為零.

3.學(xué)習(xí)等比數(shù)列可以對照等差數(shù)列類比做研究.

【作業(yè)】

1.書p48. No.1,2;

等比數(shù)列教案(篇8)

一、教材分析:

等比數(shù)列的前n項和是高中數(shù)學(xué)必修五第二章第3.3節(jié)的內(nèi)容。它是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)。這部分內(nèi)容授課時間2課時,本節(jié)課作為第一課時,重在研究等比數(shù)列的前n項和公式的推導(dǎo)及簡單應(yīng)用,教學(xué)中注重公式的形成推導(dǎo)過程并充分揭示公式的結(jié)構(gòu)特征和內(nèi)在聯(lián)系。意在培養(yǎng)學(xué)生類比分析、分類討論、歸納推理、演繹推理等數(shù)學(xué)思想。在高考中占有重要地位。

根據(jù)上述教學(xué)內(nèi)容的地位和作用,結(jié)合學(xué)生的認知水平和年齡特點,確定本節(jié)課的教學(xué)目標如下:

1.知識與技能:理解等比數(shù)列的前n項和公式的推導(dǎo)方法;掌握等比數(shù)列的前n項和公式并能運用公式解決一些簡單問題。

2.過程與方法:通過公式的推導(dǎo)過程,提高學(xué)生的建模意識及探究問題、類比分析與解決問題的能力,培養(yǎng)學(xué)生從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì)。

3.情感與態(tài)度:通過自主探究,合作交流,激發(fā)學(xué)生的求知欲,體驗探索的艱辛,體味成功的喜悅,感受思維的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美、數(shù)學(xué)的嚴謹美。

重難點確定的依據(jù):從教材體系來看,它為后繼學(xué)習(xí)提供了知識基礎(chǔ),具有承上啟下的作用;從知識本身特點來看,等比數(shù)列前n項和公式的推導(dǎo)方法和等差數(shù)列的的前n項和公式的推導(dǎo)方法可比性低,無法用類比的方法進行,它需要對等比數(shù)列的概念和性質(zhì)能充分理解并融會貫通;從學(xué)生認知水平來看,學(xué)生的探究能力和用數(shù)學(xué)語言交流的能力還有待提高。

通過創(chuàng)設(shè)問題情境,組織學(xué)生討論,讓學(xué)生在嘗試探索中不斷地發(fā)現(xiàn)問題,以激發(fā)學(xué)生的求知欲,并在過程中獲得自信心和成功感。強調(diào)知識的嚴謹性的同時重知識的形成過程,

從故事入手:傳說,波斯國王下令要獎賞國際象棋的發(fā)明者,發(fā)明者對國王說,在棋盤的第一格內(nèi)放上一粒麥子,在第二格內(nèi)放兩粒麥子,第三格內(nèi)放4粒,第四格內(nèi)放8米,……按這樣的規(guī)律放滿64格棋盤格。結(jié)果是國王傾盡國家財力還不夠支付。同學(xué)們,這幾粒麥子,怎能會讓國王賠上整個國家的財力?

關(guān)鍵就在于計算麥粒的總數(shù)。很明顯,這是一個以1為首項,以2為公比的等比數(shù)列前64項和的問題,即如何計算1+2+22+……+263?

當(dāng)q≠1時,

公式說明:①對等比數(shù)列{an}而言,a1,an,Sn,n,q知三可求二②運用公式時要根據(jù)條件選取適當(dāng)?shù)墓剑貏e注意的是,在公比不知道的情況下要分類討論;③錯位相減的思想方法。

①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

③已知a1=2,S3=26,求q。

通過例題一,滲透知三求二的思想。

練習(xí):求等比數(shù)列1,-1/2,1/4,-1/8,…,-1/512的各項的和。

例2. 等比數(shù)列{an}中,已知a1=3,S3=9,求q,an。

練習(xí):等比數(shù)列{an}中,若S3=7/2,S6=63/2,求an、S9。

例3:(1)求數(shù)列1+1/2,2+1/4,3+1/8,… n+,…的前n項和。

首先由學(xué)生分析思路,觀察出這組數(shù)列的特點,它既不是等差數(shù)列,也不是等比數(shù)列,而是等差加等比。歸納出這類數(shù)列求和的方法。

以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。

設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達能力,歸納概括能力。

本節(jié)課的設(shè)計體現(xiàn)呢“以學(xué)生為主體,教師是課堂活動的組織者、引導(dǎo)者和參與者”的現(xiàn)代教育理念。在教學(xué)的每一個環(huán)節(jié)中軍設(shè)計了問題,始終以教師提出問題,引導(dǎo)學(xué)生解決問題的方式進行,讓課堂活動變得生動而愉悅。

等比數(shù)列教案(篇9)

一. 教學(xué)內(nèi)容:

等差、等比數(shù)列的綜合應(yīng)用

二、教學(xué)目標:

綜合運用等差、等比數(shù)列的定義式、通項公式、性質(zhì)及前n項求和公式解決相關(guān)問題.

三、要點:

(一)等差數(shù)列

1. 等差數(shù)列的前 項和公式1:

2. 等差數(shù)列的前 項和公式2:

3. (m, n, p, q ∈N )

5. 對等差數(shù)列前n項和的最值問題有兩種:

(1)利用 >0,d

當(dāng) ≤0,且 二次函數(shù)配方法求得最值時n的`值。

(二)等比數(shù)列

1、等比數(shù)列的前n項和公式:

∴當(dāng) ① 或 ②

當(dāng)q=1時, 時,用公式②

2、 是等比數(shù)列 不是等比數(shù)列

②當(dāng)q≠-1或k為奇數(shù)時, 仍成等比數(shù)列

【模擬】

1. 已知等比數(shù)列的公比是2,且前四項的和為1,那么前八項的和為 ( )

A. 15 B. 17 C. 19 D. 21

2. 已知數(shù)列{an=3n-2,在數(shù)列{an}中取ak2,akn ,… 成等比數(shù)列,若k1=2,k2=6,則k4的值 ( )

A. 86 B. 54 C. 160 D. 256

3. 數(shù)列A. 750 B. 610 C. 510 D. 505

4.

A. 5 B. 6 C. 7 D. 8

5. 若一個等差數(shù)列前3項的和為34,最后3項的和為146,且所有項的和為390,

則這個數(shù)列有 ( )

A. 13項 B. 12項 C. 11項 D. 10項

6. 數(shù)列 并且 。則數(shù)列的第100項為( )

A. C. 7. 在等差數(shù)列{ =-15,公差d=3,求數(shù)列{ 的元素個數(shù),并求這些元素的和。

等比數(shù)列教案(篇10)

一、設(shè)計思想

1、設(shè)計理念

本課的教學(xué)設(shè)計基于“人人都能獲得必要得數(shù)學(xué)”即平等性的考慮,堅持面向全體學(xué)生,努力設(shè)計“適合學(xué)生發(fā)展得數(shù)學(xué)教育”,體現(xiàn)“人人學(xué)數(shù)學(xué)”,“不同的人學(xué)不同的數(shù)學(xué)”的理念。教學(xué)中強調(diào)“培養(yǎng)學(xué)生情感、態(tài)度與價值觀”的重要性,注重引導(dǎo)學(xué)生主動地進行探索,從而幫助學(xué)生樹立正確的數(shù)學(xué)觀,但又與教師的設(shè)計問題與活動的引導(dǎo)密切結(jié)合,強調(diào)“活動”的內(nèi)化,即在頭腦中實現(xiàn)必要的重構(gòu)或認知結(jié)構(gòu)的重組,從而引起真正的數(shù)學(xué)思維,提高思維的效益。通過聯(lián)系學(xué)生的生活實際使其真正感到數(shù)學(xué)是有意義的,一方面培養(yǎng)學(xué)生的社會意識,明確肯定“日常數(shù)學(xué)”的`合理性等,另一方面,再調(diào)動學(xué)生生活經(jīng)驗的同時,又應(yīng)努力幫助他們清楚地去熟悉生活經(jīng)驗并上升到“學(xué)校數(shù)學(xué)”的必要性。

2、設(shè)計背景

傳統(tǒng)的數(shù)學(xué)作業(yè)單調(diào)枯燥,脫離生活和學(xué)生實際,不利于學(xué)生個性和能力的發(fā)展。在新課程標準的理念下,重新認識作業(yè)的意義和價值,突破傳統(tǒng),改變現(xiàn)狀,樹立正確的作業(yè)觀,創(chuàng)新作業(yè)方式,激發(fā)興趣,發(fā)展學(xué)生數(shù)學(xué)素質(zhì),既注重基礎(chǔ)知識的鞏固,更要注重學(xué)生思維和能力的發(fā)展,既要創(chuàng)新又要保證其科學(xué)有效,使學(xué)生在做作業(yè)的過程中體驗快樂、形成能力、學(xué)會合作、體驗自主。

3、教材的地位與作用

本節(jié)教材在學(xué)生學(xué)習(xí)過等比數(shù)列的概念與性質(zhì)的基礎(chǔ)上,學(xué)習(xí)等比數(shù)列n前項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)求和問題。探索公式的推導(dǎo)、體會錯位相減法以及分類討論的思想方法。本節(jié)內(nèi)容基礎(chǔ)知識和基本技能非常重要,涉及的數(shù)學(xué)思想、方法較為豐富,因此是重點內(nèi)容之一。本設(shè)計是第一課時的教學(xué)內(nèi)容。

二、學(xué)習(xí)目標

⑴知識與技能

掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題。

⑵過程與方法

通過等比數(shù)列的前n項和公式的推導(dǎo)過程,體會錯位相減法以及分類討論的思想方法。 ⑶情感、態(tài)度與價值觀

通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維。

教學(xué)重點

教學(xué)難點

錯位相減法以及分類討論的思想方法的掌握。

三、教學(xué)設(shè)想:

本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以四周世界和生活實際為參照對象,為學(xué)生提供充分自由表達、質(zhì)疑、探究、討論問題的機會,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的深入探討。讓學(xué)生在“活動”中學(xué)習(xí),在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。設(shè)計思路如下:

四、教學(xué)過程

(一)創(chuàng)設(shè)問題情景

課前給出復(fù)習(xí):等比數(shù)列的定義及性質(zhì)

課首給出引例:“一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應(yīng)了

下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,

以后每天所借的錢數(shù)都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后

每天所還的錢數(shù)都是上一天的兩倍,30天后互不相欠.窮人聽后覺得挺劃算,本想定下來,但

又想到此富人是吝嗇出了名的,怕上當(dāng)受騙,所以很為難?!闭堅谧耐瑢W(xué)思考討論一下,窮

人能否向富人借錢

[設(shè)計一個學(xué)生比較感愛好的實際問題,吸引學(xué)生注重力,使其馬上進入到研究者的角色中

來!]

(二)啟發(fā)引導(dǎo)學(xué)生數(shù)學(xué)地觀察問題,構(gòu)建數(shù)學(xué)模型。

學(xué)生直覺認為窮人可以向富人借錢,教師引導(dǎo)學(xué)生自主探求,得出:

窮人30天借到的錢:S301230

窮人需要還的錢:S301222229'(130)302 465(萬元)

[直覺先行,思辨引路,在矛盾沖突中引發(fā)學(xué)生積極的思維!]

教師緊接著把如何求S301222229?的問題讓學(xué)生探究,

S301222229 ①若用公比2乘以上面等式的兩邊,得到

2S30222229230②

若②式減去①式,可以消去相同的項,得到:

S3023011073741823(分) ≈1073(萬元)>465(萬元)

答案:窮人不能向富人借錢

(三)引導(dǎo)學(xué)生用“特例到一般”的研究方法,猜想數(shù)學(xué)規(guī)律。

提出問題:如何推導(dǎo)等比數(shù)列前n項和公式?(學(xué)生很自然地模仿以上方法推導(dǎo))

相信《等比數(shù)列教案范文》一文能讓您有很多收獲!“幼兒教師教育網(wǎng)”是您了解幼兒園教案,工作計劃的必備網(wǎng)站,請您收藏yjs21.com。同時,編輯還為您精選準備了等比數(shù)列教案專題,希望您能喜歡!

相關(guān)推薦

  • 數(shù)學(xué)等差數(shù)列教案2000字 老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。教案課件寫好了,老師教學(xué)質(zhì)量肯定也差不了,對于寫教案課件有哪些疑問呢?出于您的需求,欄目小編為您搜集了以下內(nèi)容:數(shù)學(xué)等差數(shù)列教案,供大家借鑒和使用,希望大家分享!...
    2023-04-30 閱讀全文
  • 等差數(shù)列教案十四篇 古人云,工欲善其事,必先利其器。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,教案的作用就是為了緩解學(xué)生的壓力,提升效率,有了教案,在上課時遇到各種教學(xué)問題都能夠快速解決。您知道幼兒園教案應(yīng)該要怎么下筆嗎?于是,小編為你收集整理了等差數(shù)列教案十四篇。請閱讀后分享你的朋友!通過練習(xí)2和3 引出兩個...
    2023-09-03 閱讀全文
  • [參考]等差數(shù)列教案通用 寫教案時教學(xué)要求一定要得當(dāng),教案與教師的教學(xué)工作息息相關(guān)。教案成為學(xué)生發(fā)展的主導(dǎo)者和促進者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內(nèi)容。...
    2022-12-25 閱讀全文
  • 等差數(shù)列課件 我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們在正式上課之前需要精心準備這個學(xué)期的教學(xué)教案課件,每個老師都要認真思考自己的教案課件。一個出色的教案是實現(xiàn)教學(xué)目標和落實教學(xué)內(nèi)容的必不可少的工具。請務(wù)必將這篇文章收藏好,下次再讀。...
    2023-05-21 閱讀全文
  • 大班數(shù)學(xué)等分教案范本 教師需要從以下角度準備寫自己的教案課件:1. 教學(xué)目標:明確本節(jié)課的教學(xué)目標是什么,有助于學(xué)生提高哪些能力和知識。2. 教學(xué)內(nèi)容:列舉要教授的具體知識點和概念,并將其合理組織,確保邏輯清晰和有層次。3. 教學(xué)方法:選擇適合的教學(xué)方法和教學(xué)資源,如講解、示范、討論、實驗等,以提高學(xué)生的學(xué)習(xí)興趣和參與度...
    2023-11-06 閱讀全文

老師每一堂上一般都需要一份教案課件,大家可以開始寫自己課堂教案課件了。教案課件寫好了,老師教學(xué)質(zhì)量肯定也差不了,對于寫教案課件有哪些疑問呢?出于您的需求,欄目小編為您搜集了以下內(nèi)容:數(shù)學(xué)等差數(shù)列教案,供大家借鑒和使用,希望大家分享!...

2023-04-30 閱讀全文

古人云,工欲善其事,必先利其器。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,教案的作用就是為了緩解學(xué)生的壓力,提升效率,有了教案,在上課時遇到各種教學(xué)問題都能夠快速解決。您知道幼兒園教案應(yīng)該要怎么下筆嗎?于是,小編為你收集整理了等差數(shù)列教案十四篇。請閱讀后分享你的朋友!通過練習(xí)2和3 引出兩個...

2023-09-03 閱讀全文

寫教案時教學(xué)要求一定要得當(dāng),教案與教師的教學(xué)工作息息相關(guān)。教案成為學(xué)生發(fā)展的主導(dǎo)者和促進者。有沒有寫好教案的秘訣呢?下面,我們?yōu)槟阃扑]了等差數(shù)列教案,相信你能從本文中找到需要的內(nèi)容。...

2022-12-25 閱讀全文

我們?yōu)槟暨x特別的“等差數(shù)列課件”,保證讓您連連驚喜。老師們在正式上課之前需要精心準備這個學(xué)期的教學(xué)教案課件,每個老師都要認真思考自己的教案課件。一個出色的教案是實現(xiàn)教學(xué)目標和落實教學(xué)內(nèi)容的必不可少的工具。請務(wù)必將這篇文章收藏好,下次再讀。...

2023-05-21 閱讀全文

教師需要從以下角度準備寫自己的教案課件:1. 教學(xué)目標:明確本節(jié)課的教學(xué)目標是什么,有助于學(xué)生提高哪些能力和知識。2. 教學(xué)內(nèi)容:列舉要教授的具體知識點和概念,并將其合理組織,確保邏輯清晰和有層次。3. 教學(xué)方法:選擇適合的教學(xué)方法和教學(xué)資源,如講解、示范、討論、實驗等,以提高學(xué)生的學(xué)習(xí)興趣和參與度...

2023-11-06 閱讀全文