一元一次不等式課件。
對于對“一元一次不等式課件”感興趣的讀者來說,本篇幼兒教師教育網(wǎng)編輯精選的文章絕對是必讀之選。熱情歡迎您光臨本網(wǎng)站,希望您在這里度過愉快的時光。根據(jù)教學要求,老師在上課前需要準備好教案和課件,教案和課件的內(nèi)容是老師自己去完善的。學生的反饋可以幫助教師及時評估自己的教學效果。
一、教學目標:
(一)知識與能力目標:(課件第2張)
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用。
2.學生理解、鞏固一元一次不等式的解法.
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進一步理解和掌握。
4.在解決實際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學語言,學會用數(shù)學語言表示實際的數(shù)量關系。
(二)過程與方法目標:
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復習和對不等式性質(zhì)的利用,導入對解不等式的討論。
3.學生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學生將文字表達轉(zhuǎn)化為數(shù)學語言,從而解決實際問題。
5.練習鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
(三)情感、態(tài)度與價值目標:(課件第3張)
1.在教學過程()中,學生體會數(shù)學中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式
的解法,樹立辯證統(tǒng)一思想。
3.通過學生的討論,學生進一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學習,學生體會不等式解集的奇異的數(shù)學美。
二、教學重、難點:
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準確求出解集。
3.能將文字敘述轉(zhuǎn)化為數(shù)學語言,從而完成對應用問題的解決。
三、教學突破:
教材中沒有給出解法的一般步驟,所以在教學中要注意讓學生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學生的討論交流使學生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導學生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學生用多種方法求解,從而鍛煉他們活躍的思維。
四、教具:計算機輔助教學.
五、教學流程:
(一)、復習:
教學環(huán)節(jié)
教師活動
學生活動
設計意圖
導入新課
1.給出方程:(x+4)/3=(3x-1)/2,抽學生演算。(注意步驟)
2.學生回憶不等式的性質(zhì),并說出解不等式的關鍵在哪里。
3.讓學生舉一些不等式的例子。在學生歸納出一元一次不等式的概念后,據(jù)情況點評。
4.新課導入:通過上節(jié)課的學習,我們已經(jīng)掌握了解簡單不等式的方法。這節(jié)課我們來共同探討解一元一次不等式的方法。
5.學生練習,并說出解一元一次方程的步驟。
6.認真思考,用自己的語言描述不等式的性質(zhì),說出解不等式的關鍵在于將不等式化為x≤a或x≥a的形式。(出示課件第2頁)
7.舉出不等式的例子,從中找出一元一次不等式的例子,歸納出一元一次不等式的概念。
8.明確本課目標,進入對新課的學習。
9.復習解一元一次方程的解法和步驟。
10.讓學生回顧性質(zhì),以加強對性質(zhì)的理解、掌握。
11.運用類比思維
12.自然過度,出示課件第3、4張
(二)、新授:
教學環(huán)節(jié)
教師活動
學生活動
設計意圖
探究一元一次等式的解法
1、學生觀察課本第61頁例3,教師說明:解不等式就是利用不等式的三條基本性質(zhì)對不等式進行變形的過程。提醒學生注意步驟。
2.分析學生的解答,提醒學生在解不等式中常見的錯誤:不等式兩邊同乘(除)同一個負數(shù)不等號方向要改變。
3.激勵學生完成對(2)解答,并找學生上講臺演示。
4.強調(diào)在數(shù)軸上表示解集時的關鍵(出示課件第8頁)
5.出示練習(出示課件第9頁)
6.鼓勵學生討論課本第61頁的例4。提示學生:首先將簡單的文字表達轉(zhuǎn)化成數(shù)學語言。(出示課件第10頁)
7.指導學生歸納步驟。
8.補充適當?shù)木毩暎造柟虒W生所學。(出示課件第12頁)
9.類比解一元一次方程,仔細觀察,理解用不等式的性質(zhì)(3)解不等式的原理,并掌握用數(shù)軸表示不等式的解的方法。
10.學生類比解一元一次方程的步驟
與解一元一次不等式的一般步驟,同時完成練習。(出示課件第6頁)
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教師提示,組內(nèi)討論后,檢查自己的解答過程,彌補不足,進一步體會解一元一次不等式的方法。
12.理解、體會在數(shù)軸上表示解集的方法和關鍵。
13.學生組內(nèi)討論完成。
14.認真完成對例題的解答,在教師的提示下找到不等量關系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。
15.組內(nèi)討論并歸納后,看教師所出示的課件。(出示課件第11頁)
16.認真完成練習。
17.電腦逐步演示,讓學生從演示過程中理解不等式的解法。(出示課件第5張)
18.鞏固對一般解法的理解、掌握。
19.通過類比歸納,提高學生的自學能力。(出示課件第7頁)以訂正學生解答。
20.讓學生明白不等式的解集是一個范圍,而方程的解是一個值。
21.培養(yǎng)學生的擴展能力。
22.類比一元一次方程的解法以加深對一元一次不等式解法的理解。
23.通過動手、動腦使所學知識得到鞏固。
24.鞏固所學。
(三)、小結(jié)與鞏固:
教學環(huán)節(jié)
教師活動
學生活動
設計意圖
小結(jié)與鞏固
1.引導學生對本課知識進行歸納。
2.學生完成后(出示課件第13、14頁)。
3.練習與鞏固。
1.學生組內(nèi)討論小結(jié),組長幫助組員對知識鞏固、提升。
2.學生加強理解。
3.完成練習:書63頁第4題,第5(2、4)題。
1.培養(yǎng)學生總結(jié)、歸納的能力。
2.點撥學生對知識的理解與掌握。
3.鞏固本課所學。
一元一次不等式組(一)
教學目標
1.使學生知道一元一次不等式組及其解集的含義,會利用數(shù)軸求一元一次不等式組的解集;
2.使學生逐步學會用數(shù)形結(jié)合的觀點去分析問題、解決問題. 教學重點和難點
重點:掌握一元一次不等式組解集的含義. 難點:求不等式組中各不等式的解集的公共部分. 課堂教學過程設計
一、從學生原有的認知結(jié)構(gòu)提出問題
1.什么叫不等式?不等式的解?不等式的解集?解不等式?
3.將第2題中的不等號改為等號所得的一元一次方程的解是什么?不等式的解集與方程的解有什么不同?
4.(投影)在數(shù)軸上表示下列不等式的解集:
(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0.
5.(投影)將下列各圖中數(shù)軸上的點的集合用不等式來表示.(學生口答完成)
在學生解答完上述各題的基礎上,教師指出,我們知道,物體A的重量x克大于2克,且小于3克,就是說,x的取值要使不等式x>2與x<3同時成立.
而將一元一次不等式x>2與x<3合在一起,就組成了一個一元一次不等式組,記作
本節(jié)課,我們就來學習一元一次不等式組及其解法.
二、講授新課 1.利用數(shù)軸的直觀性,師生共同得出一元一次不等式組解集的概念 首先,在數(shù)軸上表示不等式①,②的解集,如下圖.
其次,可向?qū)W生提出如下問題:
(1)通過觀察,要使不等式①,②同時成立,則x的取值范圍是什么?(2)這個取值范圍,是不等式①,②的解集的什么? 進一步追問,什么叫一元一次不等式組的解集?
最后,板書一元一次不等式組的解集的定義.
一般地,幾個一元一次不等式的解集的公共部分,叫做由它們所組成的一元一次不等式組的解集.
求不等式組的解集的過程,叫解不等式組.
例1(1)在同一數(shù)軸上表示x<2,x>-3的解集.(2)在同一數(shù)軸上表示x>-4,x>-1的解集.(3)在同一數(shù)軸上表示x<2,x<-3的解集.(4)在同一數(shù)軸上表示x>2,x<-1的解集.
若上述各題中的解集有公共部分,用不等式表示出來.(此題可由學生板演來完成). 解:
此時,教師指出:由上例可以看出,由不等式x>-3或x<2合在
類似的,上例中
練習
解不等式組:
(本練習,應繼續(xù)鞏固學生利用數(shù)軸的直觀性解不等式組的能力)2.啟發(fā)學生總結(jié)解一元一次不等式組的方法及步驟 例2 解不等式組:
師生共同分析:我們知道,解不等式組就是求不等式組解集的過程.那么如何求不等式組的解集呢?(讓學生想一想,然后請幾名學生回答)應首先求出不等式①和②的解集,然后利用數(shù)軸找出這兩個解集的公共部分,就是不等式組的解集.
解:解不等式①,得x>2,解不等式②,得x>3,在數(shù)軸上表示不等式①,②的解集.
所以這個不等式組的解集是x>3.
(首先讓兩名學生分別解出不等式①,②然后回答不等式組解集.教師板書解答過程,并用彩筆在數(shù)軸上把相應的部分描述出來,以使學生感到醒目,加深理解記憶)例3 解不等式組:
解:解不等式①,得x<3,在數(shù)軸上表示為
(本題讓一名學生板演,其余學生在練習本上自己完成,教師巡視,并及時糾正學生在解題過程中出現(xiàn)的問題)結(jié)合上面兩個例題,教師應讓學生思考并回答,解一元一次不等式組的方法及步驟是什么?
解一元一次不等式組可以分為以下兩個步驟:
(1)求出這個不等式組中各個不等式的解集;
(2)利用數(shù)軸求出這些不等式的解集的公共部分,即求出這個不等式組的解集.(若各個不等式的解集無公共部分,則此不等式無解)
三、課堂練習1.填表:(投影)
2.解下列不等式組:
四、師生共同小結(jié)
首先,讓學生回答以下問題: 1.本節(jié)課我們學習了哪些內(nèi)容?
2.什么叫一元一次不等式組的解集?什么叫解不等式組? 3.解一元一次不等式組的步驟是什么?
4.若一元一次不等式組中,不等式的個數(shù)多于兩個時,解集的求法有無變化?結(jié)合學生的回答,教師指出,一元一次不等式組的解集是這個不等式組中各個不等式的解集的公共部分;當不等式個數(shù)多于兩個時,求解方法沒有變化.
五、作業(yè)
解不等式組:
課堂教學設計說明
在設計教學過程時,注意到了學生的年齡特點.遵循由淺入深、循序漸進的原則,并注意利用數(shù)軸的形象、直觀來表示不等式組的解集.
學習目標:
1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。
2、會解由兩個一元一次不等式組成的一元一次不等式組,能借助數(shù)軸正確的表示一元一次不等式組的解集。
3、通過探討一元一次不等式組的解法以及解集的確定,滲透轉(zhuǎn)化思想,進一步感受數(shù)形結(jié)合在解決問題中的作用。
4、體驗不等式在實際問題中的作用,感受數(shù)學的應用價值。
學習重點:
一元一次不等式組的解法
學習難點:
一元一次不等式組解集的確定。
一、學前準備
【回顧】
1.解不等式 ,并把解集在數(shù)軸上表示出來。
【預習】
1、 認真閱讀教材34-35頁內(nèi)容
2、__________叫做一元一次不等式組。
_________叫做一元一次不等式組的解集。
叫做解不等式組。
4、求下列兩個不等式的解集,并在同一條數(shù)軸上表示出來
二、探究活動
【例題分析】
例1. (問題1)題中的買5筒錢不夠,買4筒錢又多的含義是什么?
例2. (問題2)題中的相等關系是什么?不等關系又是什么?
例3. 解不等式組
【小結(jié)】
不等式組解集口訣
同大取大,同小取小,大小小大中間找,大大小小解不了
一元一次不等式組解集四種類型如下表:
不等式組(a)
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
無解 大大小小解不了
【課堂檢測】
1、不等式組 的解集是( )
A. B. C. D.無解
2、不等式組 的解集為( )
A.-1
3、不等式組 的解集在數(shù)軸上表示正確的是( )
A B C D
4、寫出下列不等式組的解集:(教材P35練習1)
三、自我測試
1.填空
(1)不等式組x-1 的解集是___;
(2)不等式組x-2 的解集 ;
(3)不等式組x1 的解集是____;
(4)不等式組x-4 解集是____。
2、解下列不等式組,并在數(shù)軸上表示出來
四、應用與拓展
若不等式組 無解,則m的取值范圍是 _____.
一元一次不等式組(2)
文星中學唐波
一、教學目標
(一)知識與技能目標
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題。
2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標
通過利用列一元一次不等式組解答實際問題,初步學會從數(shù)學的角度提出問題、理解問題、并能綜合運用所學的知識解決問題,發(fā)展應用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學學習的樂趣,初步認識數(shù)學與人類生活的密切聯(lián)系。
二、教學重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學模型。
(二)難點:正確分析實際問題中的不等關系,根據(jù)具體信息列出不等式組。
三、學法引導
(一)教師教法:直觀演示、引導探究相結(jié)合。
(二)學生學法:觀察發(fā)現(xiàn)、交流探究、練習鞏固相結(jié)合。
四、教具準備:多媒體演示
五、教學過程
(一)、設問激趣,引入新課
猜一猜:我屬狗,請同學們根據(jù)我的實際情況來猜測我的年齡。(學生大膽猜想,利用不等關系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關
1、比一比:填表找規(guī)律
(學生搶答,教師補充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學生回答,教師補充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務;如果每人每天比原計劃多拍1張,就能提前完成任務,每個同學原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關系的句子。師引導分析,并提出問題:
(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?你是怎樣理解“提前完成任務”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設未知數(shù)?
(3)在本題中,可以找出幾個不等關系,可以列出幾個不等式?(學生交流討論,教師指導。)
?7x?98
?7(x?3)?98
解答完成后,學生自學課本例2。
3、由例解題答過程,類比列二元一次方程組解應用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設未知數(shù); .(2)、利用不等關系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學生總結(jié),抽生回答,教師補充。)
(四)、闖關練習,鞏固新知
1練一練:為紀念“5·12”大地震一周年,“五一”部分同學到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學參加青城山旅游? ..150張;..180張。
教師引導:抓住重點詞語,找到不等關系,列出不等式組。學生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應用題的區(qū)別:
(學生類比找區(qū)別,教師補充。)2練一練(教科書P140練習第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學生分析列出不等式組,教師指導。(前面的練習已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關系的問題,可通過不等式組解決。
3、列一元一次不等式組解應用題的步驟是:(1)、分析題意,設未知數(shù);(2)、利用不等關系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習題第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設計
一元一次不等式組(2)
解:設每個同學原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設未知數(shù);
解得x
3根據(jù)題意,x應為整數(shù),所以x=16 答:每個同學原計劃每天拍16張。
2??
2、找不等關系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
一、素質(zhì)教育目標
(一)知識教學點
1.理解一元一次不等式組解集的概念,會利用數(shù)軸較簡單的一元一次不等式組。
2.掌握一元一次不等式組解集的幾種情況。
(二)能力訓練點
通過利用數(shù)軸解不等式組,培養(yǎng)學生的觀察能力、分析能力、歸納總結(jié)能力。
(三)德育滲透點
通過不等式組解集的求法,培養(yǎng)學生的觀察與分析能力,滲透辯證唯物主義的觀點。
(四)美育滲透點
用數(shù)軸求不等式組的解集,滲透用數(shù)學圖形解題的直觀性、簡捷性的數(shù)學美。
二、學法引導
1.教學方法:引導發(fā)現(xiàn)法、觀察法、歸納總結(jié)法。
2.學生學法:學會利用數(shù)軸將兩個不等式的解集表示出來,并觀察出其公共部分,再小結(jié)出不等式組的解集。
三、重點·難點·疑點及解決辦法
(一)重點
理解一元一次不等式組解集的概念,會用數(shù)軸表示一元一次不等式組解集的幾種情況。
(二)難點
正確理解一元一次不等式組解集的含義。
(三)疑點
弄清一元一次不等式解集和不等式組的解集的關系,以及對四種不等式組解集的一般形式的理解。
(四)解決辦法
加強對不等式組解集含義的理解,并熟練掌握用數(shù)軸表示不等式解集,利用觀察法、歸納法即可掌握求不等式組解集的辦法。
四、課時安排
一課時.
五、教具學具準備
直尺、鉛筆、投影儀或電腦、自制膠片。
六、師生互動活動設計
1.教師設計提問有關一元一次不等式的定義及其解集的概念,并復習用數(shù)軸表示一元一次不等式的解集的方法。
2.教示范一元一次不等式組解集的四種常規(guī)圖形的表示方法,并引導學生理解記憶它們。
3.通過反復的師生共練,從實踐中歸納小結(jié)出不等式組解集的規(guī)律。
七、教學步驟
(一)明確目標
本節(jié)課重點學習用數(shù)軸表示不等式組解集的方法,并能熟練地加以應用。
(二)整體感知
要正確表示出不等式組的解集的關鍵在于學會用數(shù)軸表示。若有解,必為其公共部分;若無公共部分,則為無解.并要正確地理解一元一次不等式組解集的規(guī)律。
(三)教學過程
1.創(chuàng)設情境,復習引入
(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?
(2)已知一個數(shù)比2大但比4小,請在數(shù)軸上表示數(shù)。
學生活動:口答(1)題.板演(2)題,如下圖所示:
教師分析:一個數(shù)比2大但比4小,說明取值使不等式與都成立,把一元一次不等式與合在一起,就組成了一個一元一次不等式組,記作在數(shù)軸上表示不等式①②的解集
可以看出,使不等式,都成立的值,是所有大于2并且小于4的數(shù)(記作),它們是不等式①、②的解集的公共部分,在數(shù)軸上表示成:
不等式①、②的解集的公共部分,叫做由不等式①、②組成的一元一次不等式組的解集。
【教法說明】通過學生板演,教師分析,使學生形成對不等式組解集的初步認識,激發(fā)了他們應用舊知識探索新知識的熱情。
2.探索新知,講授新課
(1)不等式組的解集:一般地,幾個一元一次不等式的解集的公共部分叫做由它們組成的不等式組的解集。
說明:求不等式組解集的關鍵是找不等式解集的“公共部分”。若有公共部分,公共部分即為解集;若無公共部分,則不等式組無解。
(2)解不等式組:求不等式組解集的過程叫解不等式組。
請同學們根據(jù)自己的理解,解答下列各題。
例1利用數(shù)軸判斷下列不等式組有無解集?若有解集,請求出。
① ② ③ ④
學生活動:學生在練習本上完成,同時指定四個學生板演.板演完成后,由學生判斷是否正確。
解:① ②
不等式組解集為不等式組解集為
③ ④
不等式組解集為不等式組無解
【教法說明】教學時,可用彩筆在數(shù)軸上描出折線的公共部分,這樣可以使學生直觀、形象地理解不等式組解集的含義,并掌握解集的表示方法。
3.嘗試反饋,鞏固知識
利用數(shù)軸判斷下列不等式組有無解集?如有,請表示出來。
教學活動:獨立完成,同桌互閱,投影出示正確答案。
教師活動:抽查部分學生,糾正錯誤。
一元一次不等式組中,不等式個數(shù)多于兩個,解集求法有無變化呢?同學們通過解答下列各題,仔細體會。
利用數(shù)軸解下列不等式組:
學生活動:分析討論,嘗試得出答案;指名回答,與投影出示的正確解題過程對比.
答案:(1)(2)(3)(4)無解
4.變式訓練,培養(yǎng)能力
單項選擇:
(1)不等式組的整數(shù)解是()
A.0,1 B.0 C.1 D.
(2)不等式組的負整數(shù)解是()
A.-2,0,-1 B.-2 C.-2,-1 D.不能確定
(3)不等式組的解集在數(shù)軸上表示正確的是()
(4)不等式組的解集在數(shù)軸上表示正確的為()
(5)根據(jù)圖中所示可知不等式組的解集為()
A.B.C.D.
學生活動:前后桌結(jié)組討論完成,各組以搶答方式說出答案.
參考答案:C,C,D,A,C
【教法說明】設置上述題組旨在訓練學生的思維能力;以搶答形式完成則是為了激發(fā)學生探索知識的熱情.
(四)總結(jié)、擴展
不等式組
1.圖示
2.折線特點
3.解集
4.解集與公共部分關系
折線的公共部分
即為不等式組的解集
無解若,不等式組的解集是什么?有規(guī)律可尋嗎?
【教法說明】學生通過實踐嘗試得到規(guī)律,以此揭示規(guī)律存在的一般性、必然性,既訓練了學生的歸納總結(jié)能力,也充分發(fā)揮了主體作用.
注意問題:教學時,每組不等式不要超過三個,關鍵是使學生理解和掌握解不等式的方法,不宜過于難、過于多,避免重復的機械計算.
八、布置作業(yè)
(一)必做題:P78 1;P79 A組1.
(二)選擇題:
填空題:
1.不等式組的非負整數(shù)解是_______________.
2.若同時滿足與,則的取值范圍是______________.
3.一元一次不等式組()的解集為,則與的大小關系為____________.
【教法說明】補充題旨在訓練學生的思維能力、應變能力和解題靈活性.
參考答案
略.
九、板書設計
幼師資料《2023一元一次不等式課件(熱門五篇)》一文希望您能收藏!“幼兒教師教育網(wǎng)”是專門為給您提供幼師資料而創(chuàng)建的網(wǎng)站。同時,yjs21.com還為您精選準備了一元一次不等式課件專題,希望您能喜歡!
相關推薦
俗話說,凡事預則立,不預則廢。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學效果,最好的解決辦法就是準備好教案來加強學習效率,。教案有助于老師在之后的上課教學中井然有序的進行。那么如何寫好我們的幼兒園教案呢?經(jīng)過整理,小編為你呈上一元一次不等式課件教案9篇,僅供參考,歡迎大家閱讀本文。教學目標1.能夠...
假若你正在尋找“一元一次不等式說課稿”的信息,那么你來對了地方。教師的聰明才智能點亮學生學習的靈光,唯有準備科學、全面、透徹的教案才能讓學生成就更大。制定有效的教案有助于教師更加有效地進行課堂授課,并確保學生的學習效果。請繼續(xù)關注本網(wǎng)站,獲得更多相關信息。...
教師會將課本中的主要教學內(nèi)容整理到教案課件中,因此,教師需要精心計劃每份教案課件的重點和難點。詳實的教案能夠幫助教師記錄學生的學習進度。如果想要寫一份教案課件,需要具備哪些步驟呢?欄目小編推薦閱讀一元二次不等式課件教案,希望能對你有所幫助!...
你近期在尋找優(yōu)質(zhì)的教學教案嗎?舉世不師,故道益離,給學生上課的時候,教案的作用性就顯現(xiàn)出來了。教案是教師保證教學成功的根本條件,請你閱讀幼兒教師教育網(wǎng)輯為你編輯整理的《一元二次不等式說課稿》,供大家參考借鑒,希望可以幫助到有需要的朋友!...
經(jīng)驗時常告訴我們,做事要提前做好準備。在平日里的學習中,幼兒園教師時常會提前準備好有用的資料。資料可以指人事物的相關多類信息、情報。有了資料才能更好地安排接下來的學習工作!你是否收藏了一些有用的幼師資料內(nèi)容呢?以下是由小編為大家整理的“2023不等式課件14篇”,僅供參考,歡迎大家閱讀。七年級數(shù)學不...
最新更新