作為一位不辭辛勞的人民教師,往往需要進行教案編寫工作,教案有助于學生理解并掌握系統(tǒng)的知識。那么應當如何寫教案呢?以下是小編精心整理的高一數學三角函數教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
《銳角三角函數》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。根據新課標的理念,對于本節(jié)課,以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。
一、教材的地位和作用
1、教材分析
本節(jié)教材是人教版初中數學新教材九年級下第28章第一節(jié)內容,是初中數學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數、反三角函數的工具性內容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。
2、學情分析
從學生的年齡特征和認知特征來看:
九年級學生的思維活躍,接受能力較強,具備了一定的數學探究活動經歷和應用數學的意識。
從學生已具備的知識和技能來看:
九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎。
從心理特征來看:九年級學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學生有待于提高的知識和技能來看:
學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數學知識之間的聯系,感受數形結合的思想,體會銳角三角函數的意義,提高應用數學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。
3、教學重點、難點
根據以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我認為本節(jié)課的重點為:理解正弦函數意義,并會求銳角的正弦值。
難點為:根據銳角的正弦值及一邊,求直角三角形的其它邊長。
二、教學目標分析:
新課標指出,教學目標應從知識技能、數學思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應是緊密聯系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數學思考充分體現在問題解決中。借此結合以上教材分析,將四個目標進行整合,確定本節(jié)課的教學目標為:
1.理解銳角正弦的意義,并會求銳角的正弦值;
2掌握根據銳角的正弦值及直角三角形的一邊,求直角三角形的其它邊長的方法;
3經歷銳角正弦的意義探索的過程,培養(yǎng)學生觀察分析、類比歸納的探究問題的能力;
4通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生的團隊合作精神。
三、教學方法和學法分析
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據這一教學理念,結合本節(jié)課的內容特點和學生的學情情況,本節(jié)課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。
本節(jié)課的教法采用的是情境引導和自學教學法,在教學過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯系。教師通過引導、指導、反饋、評價,不斷激發(fā)學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數學知識解決實際問題,享受數學學習帶來的樂趣。
本節(jié)課的學習方法采用自主探究法與合作交流法相結合。本節(jié)課數學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發(fā)展,從合作交流中提高。
四、教學過程
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課主要安排以下教學環(huán)節(jié):
(一)自學提綱
1、已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB
已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC
設計意圖:建構注意主張教學應從學生已有的知識體系出發(fā),相似的三角形性質是本節(jié)課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
2、創(chuàng)設情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(板書課題)
設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發(fā)學生的學習興趣和求知欲望。
通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)。
(二)合作交流
1、閱讀課本P74問題與思考(要求學生獨立思考后小組內合作探究)
結論:直角三角形中,30°角的對邊與斜邊的比值。
2、閱讀課本P75思考,并求值
結論:直角三角形中,45°角的對邊與斜邊的比值。
設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。
3、閱讀課本P75探究。
問:銳角A度數一定時,不管直角三角形的大小如何,它的對邊與斜邊的比有什么關系?你能解釋嗎?
4、正弦函數定義:在Rt△ABC中,∠C=900,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=BC/AB
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正弦習慣上省略“∠”的符號.
2、本章我們只研究銳角的正弦。
通過前面的學習,學生已基本把握了本節(jié)課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=90°,根據圖中數據
求sinA和sinB
2、課本77頁練習
3、判斷對錯(學生口答)
(1)若銳角∠A=∠B,則sinA=sinB()
(2)sin60°=30°+sin30°()
4、將Rt△ABC各邊擴大100倍,則sinA的值()
A.擴大100倍B.縮小100倍C.不變D.不確定
5、平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。
6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的長。
設計意圖:例題及練習題由淺入深、由易到難、各有側重,體現新課標提出的讓不同的學生在數學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內化知識。
(四)自主評價(小結歸納,拓展深化)
我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:
①通過本節(jié)課的學習,你學會了哪些知識;
②通過本節(jié)課的學習,你最大的體驗是什么;
③通過本節(jié)課的學習,你掌握了哪些學習數學的方法?
(五)自主拓展(提高升華)
1、課本習題28.1第1、2、題。(只做與正弦函數有關的部分);
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=1/3,周長為60,求:斜邊AB的長.
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸??偟脑O計意圖是反饋教學,鞏固提高。
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin45°和sin30°的大小。
設計要求:(1)先學生獨立思考后小組內探究
(2)各組交流展示探究結果,并且組內或各組之間自主評價.
設計意圖:
(1)有一定難度需要學生進行合作探究,有利于培養(yǎng)學生善于反思的好習慣.
(2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。
教學反思
1.本教學設計以直角三角形為主線,力求體現生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯系,讓學生感受探究的樂趣,使學生在學中思,在思中學。
2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現他們的主體地位,教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應用較廣泛的三角函數。因而在本節(jié)課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數學問題,讓學生體會學數學、用數學的樂趣。
一、課前準備:
【自主梳理】
1.任意角
(1)角的概念的推廣:
(2)終邊相同的角:
2.弧度制:
弧度與角度的換算:
3.弧長公式:扇形的面積公式:
4.任意角的三角函數
(1)任意角的三角函數定義
(2)三角函數在各象限內符號口訣是.
5.三角函數線
【自我檢測】
1.度.
2.是第象限角.
3.在上與終邊相同的角是.
4.角的終邊過點,則.
5.已知扇形的周長是6,面積是2,則扇形的圓心角的弧度數是.
6.若且則角是第象限角.
二、課堂活動:
【例1】填空題:
(1)若則為第象限角.
(2)已知是第三象限角,則是第象限角。
(3)角的終邊與單位圓(圓心在原點,半徑為的圓)交于第二象限的點,則。
(4)函數的值域為。
【例2】
(1)已知角的終邊經過點且,求的值;
(2)為第二象限角,為其終邊上一點,且求的值.
【例3】已知一扇形的中心角是,所在圓的半徑是.
(1)若求扇形的弧長及該弧所在的弓形面積;
(2)若扇形的周長是一定值,當為多少弧度時,該扇形有最大面積.
課堂小結
三、課后作業(yè)
1.角是第四象限角,則是第象限角.
2.若,則角的終邊在第象限.
3.已知角的終邊上一點,則.
4.已知圓的周長為,是圓上兩點,弧長為,則弧度.
5.若角的終邊上有一點則的值為.
6.已知點落在角的終邊上,且,則的值為.
7.有下列各式:①②③④,其中為負值的序號為。
8.在平面直角坐標系中,以軸為始邊作銳角,它們的終邊分別與單位圓相交于兩點,已知兩點的橫坐標分別為,則.
9.若一扇形的周長為,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大值是多少?
的正弦、余弦和正切值.
今天我說課的課題是《銳角三角函數》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。
根據新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。
一、教材的地位和作用
本節(jié)教材是人教版初中數學新教材九年級下第28章第一節(jié)內容,是初中數學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數、反三角函數、三角方程的工具性內容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應用,而且起著承前啟后的作用。
2、學情分析
從學生的年齡特征和認知特征來看:
九年級學生的思維活躍,接受能力較強,具備了一定的數學探究活動經歷和應用數學的意識。
從學生已具備的知識和技能來看:
九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學任務打下了基礎
從心理特征來看:初三學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學生有待于提高的知識和技能來看:
學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數學知識之間的聯系,感受數形結合的思想,體會銳角三角函數的意義,提高應用數學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。
3、教學重、難點
根據以上對教材的地位和作用,以及學情分析,結合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數意義,并會求銳角的正弦值。
難點確定為:根據銳角的正弦值及一邊,求直角三角形的其他邊長。
二、教學目標分析
新課標指出,教學目標應從知識技能、數學思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應是緊密聯系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數學思考充分體現在問題解決中。借此結合以上教材分析,我將四個目標進行整合,確定本節(jié)課的教學目標為:
1.理解銳角正弦的意義,并會求銳角的正弦值;
2.初步了解銳角正弦取值范圍及增減性;
3.掌握根據銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;
4.經歷銳角正弦的意義探索的過程,培養(yǎng)學生觀察分析、類比歸納的探究問題的能力;
5.通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養(yǎng)成積極思考,獨立思考的好習慣,并且同時培養(yǎng)學生的團隊合作精神。
三、教學方法和學法分析
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據這一教學理念,結合本節(jié)課的內容特點和學生的學情情況,本節(jié)課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。
另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發(fā)學生的學習興趣,增大教學容量,提高教學效率。
本節(jié)課的教法采用的是情境引導和探究發(fā)現教學法,在教學過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯系。教師通過引導、指導、反饋、評價,不斷激發(fā)學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數學知識解決實際問題,享受數學學習帶來的樂趣。
本節(jié)課的學習方法采用自主探究法與合作交流法相結合。本節(jié)課數學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發(fā)展,從合作交流中提高。
四、教學過程
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下教學環(huán)節(jié):
(一)自主探究
1、復習舊知,溫故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=
設計意圖:建構注意主張教學應從學生已有的知識體系出發(fā),相似的三角形性質是本節(jié)課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
2、創(chuàng)設情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(板書課題)
設計意圖:以問題串的形式創(chuàng)設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發(fā)學生的學習興趣和求知欲望‘
通過情境創(chuàng)設,學生已激發(fā)了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)———
(二)自主合作
1、發(fā)現問題,探求新知(要求學生獨立思考后小組內合作探究)
1、(播放綠化荒山的視頻)課本P74問題與思考,求的值
2、課本P75思考:求的值
設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。
2、分析思考,加深理解
1、課本P75探索,
問:與有什么關系?你能解釋嗎?
2、正弦函數定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正切習慣上省略“∠”的符號.
2、本章我們只研究銳角∠A的正弦.
3、sinA的范圍:0
設計意圖:數學教學論指出,數學概念要明確其內涵和外延(條件、結論、應用范圍等),通過對銳角正弦定義闡述,使學生的認知結構得到優(yōu)化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。
通過前面的學習,學生已基本把握了本節(jié)課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據圖中數據
求sinA和sinB
2、判斷對錯(學生口答)
(1)若銳角∠A=∠B,則sinA=sinB ( )
(2)sin600=sin300+sin300 ( )
3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值( )
A.擴大100倍B.縮小100倍C.不變D.不確定
4、如圖,平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。
設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現新課標提出的讓不同的學生在數學上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內化知識。
(四)自主拓展(提高升華)
1、課本習題28.1第1、2、題;
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設計了必做題和選做題,必做題是對本節(jié)課內容的一個反饋,選做題是對本節(jié)課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。
(五)自主評價(小結歸納,拓展深化)
我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:
①通過本節(jié)課的學習,你學會了哪些知識;
②通過本節(jié)課的學習,你最大的體驗是什么;
③通過本節(jié)課的學習,你掌握了哪些學習數學的方法?
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin450和sin300的大小?
設計要求:(1)先學生獨立思考后小組內探究
(2)各組交流展示探究結果,并且組內或各組之間自主評價.
設計意圖:
(1)有一定難度需要學生進行合作探究,有利于培養(yǎng)學生善于反思的好習慣.
(2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。我的說課到此結束,敬請各位老師批評、指正,謝謝!
教學反思
1.本教學設計以直角三角形為主線,力求體現生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯系,讓學生感受探究的樂趣,使學生在學中思,在思中學。
2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現他們的主體地位,教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應用較廣泛的三角函數。因而在本節(jié)課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數學問題,讓學生體會學數學、用數學的樂趣。
一、教學目標
1.知識與技能
(1)能夠借助三角函數的定義及單位圓中的三角函數線推導三角函數的誘導公式。
(2)能夠運用誘導公式,把任意角的三角函數的`化簡、求值問題轉化為銳角三角函數的化簡、求值問題。
2.過程與方法
(1)經歷由幾何直觀探討數量關系式的過程,培養(yǎng)學生數學發(fā)現能力和概括能力。
(2)通過對誘導公式的探求和運用,培養(yǎng)化歸能力,提高學生分析問題和解決問題的能力。
3.情感、態(tài)度、價值觀
(1)通過對誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度。
(2)在誘導公式的探求過程中,運用合作學習的方式進行,培養(yǎng)學生團結協(xié)作的精神。
二、教學重點與難點
教學重點:探求π-a的誘導公式。π+a與-a的誘導公式在小結π-a的誘導公式發(fā)現過程的基礎上,教師引導學生推出。
教學難點:π+a,-a與角a終邊位置的幾何關系,發(fā)現由終邊位置關系導致(與單位圓交點)的坐標關系,運用任意角三角函數的定義導出誘導公式的“研究路線圖”。
三、教學方法與教學手段
問題教學法、合作學習法,結合多媒體課件
四、教學過程
角的概念已經由銳角擴充到了任意角,前面已經學習過任意角的三角函數,那么任意角的三角函數值怎么求呢?先看一個具體的問題。
(一)問題提出
如何將任意角三角函數求值問題轉化為0°~360°角三角函數求值問題。
【問題1】求390°角的正弦、余弦值.
一般地,由三角函數的定義可以知道,終邊相同的角的同一三角函數值相等,三角函數看重的就是終邊位置關系。即有:sin(a+k·360°)=sinα,cos(a+k·360°)=cosα,(k∈Z),tan(a+k·360°)=tanα。
這組公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈Z)(公式一),tan(a+2kπ)=tanα。
(二)嘗試推導
如何利用對稱推導出角π-a與角a的三角函數之間的關系。
由上一組公式,我們知道,終邊相同的角的同一三角函數值一定相等。反過來呢?如果兩個角的三角函數值相等,它們的終邊一定相同嗎?比如說:
【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?
角π-a與角a的終邊關于y軸對稱,有sin(π-a)=sina,cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。
〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?
因為與角a終邊關于y軸對稱是角π-a,利用這種對稱關系,得到它們的終邊與單位圓的交點的縱坐標相等,橫坐標互為相反數。于是,我們就得到了角π-a與角a的三角函數值之間的關系:正弦值相等,余弦值互為相反數,進而,就得到我們研究三角函數誘導公式的路線圖:角間關系→對稱關系→坐標關系→三角函數值間關系。
(三)自主探究
如何利用對稱推導出π+a,-a與a的三角函數值之間的關系。
剛才我們利用單位圓,得到了終邊關于y軸對稱的角π-a與角a的三角函數值之間的關系,下面我們還可以研究什么呢?
【問題3】兩個角的終邊關于x軸對稱,你有什么結論?兩個角的終邊關于原點對稱呢?
角-a與角a的終邊關于x軸對稱,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。
角π+a與角a終邊關于原點O對稱,有:sin(π+a)=-sina,cos(π+a)=-cosa,(公式四)tan(π+a)=tana。
上面的公式一~四都稱為三角函數的誘導公式。
(四)簡單應用
例求下列各三角函數值:
(1)sinp;
(2)cos(-60°);
(3)tan(-855°)
(五)回顧反思
【問題4】回顧一下,我們是怎樣獲得誘導公式的?研究的過程中,你有哪些體會?
知識上,學會了四組誘導公式;思想方法層面:誘導公式體現了由未知轉化為已知的化歸思想;誘導公式所揭示的是終邊具有某種對稱關系的兩個角三角函數之間的關系。主要體現了化歸和數形結合的數學思想。具體可以表示如下:
(六)分層作業(yè)
1、閱讀課本,體會三角函數誘導公式推導過程中的思想方法;
2、必做題課本23頁13
3、選做題
(1)你能由公式二、三、四中的任意兩組公式推導到另外一組公式嗎?
(2)角α和角β的終邊還有哪些特殊的位置關系,你能探究出它們的三角函數值之間的關系嗎?
說教學目標:
1、使學生了解角的形成,理解角的概念掌握角的各種表示法;
2、通過觀察、操作培養(yǎng)學生的觀察能力和動手操作能力。
3、使學生掌握度、分、秒的進位制,會作度、分、秒間的單位互化
4、采用自學與小組合作學習相結合的方法,培養(yǎng)學生主動參與、勇于探究的精神。
說教學重點:
理解角的概念,掌握角的三種表示方法
說教學難點:
掌握度、分、秒的進位制, ,會作度、分、秒間的單位互化
說教學手段:
教具:電腦課件、實物投影、量角器
學具:量角器需測量的角
說教學過程:
一、建立角的概念
(一)引入角(利用課件演示)
1、從生活中引入
提問:
A、以前我們曾經認識過角,那你們能從這兩個圖形中指出哪些地方是角嗎?
B、在我們的生活當中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?
2、從射線引入
提問:
A、昨天我們認識了射線,想從一點可以引出多少條射線?
B、如果從一點出發(fā)任意取兩條射線,那出現的是什么圖形?
C、哪兩條射線可以組成一個角?誰來指一指。
(二)認識角,總結角的定義
3、 過渡:角是怎么形成的呢?一起看
(1)、演示:老師在這畫上一個點,現在從這點出發(fā)引出一條射線,再從這點出發(fā)引出第二條射線。
提問:觀察從這點引出了幾條射線?此時所組成的圖形是什么圖形?
(2)、判斷下列哪些圖形是角。
(√) (×) (√) (×) (√)
為何第二幅和第四幅圖形不是角?(學生回答)
誰能用自己的話來概括一下怎樣組成的圖形叫做角?
總結:有公共端點的兩條射線所組成的圖形叫做角(angle)
角的第二定義:角也可以看做由一條射線繞端點旋轉所形成的圖形.如下圖中的角,可以看做射線OA繞端點0按逆時針方向旋轉到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.
B
0 A
4、認識角的各部分名稱,明確頂點、邊的作用
(1)觀看角的圖形提問:這個點叫什么?這兩條射線叫什么?(學生邊說師邊標名稱)
(2)角可以畫在本上、黑板上,那角的位置是由誰決定的?
(3)頂點可以確定角的位置,從頂點引出的兩條邊可以組成一個角。
5、學會用符號表示角
提問:那么,角的符號是什么?該怎么寫,怎么讀的呢?(電腦顯示)
(1)可以標上三個大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA.
(2)觀察這兩種方法,有什么特點?(字母B都在中間)
(3)所以,在只有一個角的時候,我們還可以寫作: ∠B,讀作:角B
(4)為了方便,有時我們還可以標上數字,寫作∠1,讀作:角1
(5)注:區(qū)別 “∠”和“
6、強調角的大小與兩邊張開的程度有關,與兩條邊的長短無關。
二、 角的度量
1、學習角的度量
(1)教學生認識量角器
(2) 認識了量角器,那怎樣使用它去測量角的度數呢?這部分知識請同學們合作學習。
提出要求:小組合作邊學習測量方法邊嘗試測量
第一個角,想想有幾種方法?
1、要求合作學習探究、測量。
2、反饋匯報:學生邊演示邊復述過程
3、教師利用課件演示正確的操作過程,糾正學生中存在的問題。
4、歸納概括測量方法(兩重合一對)
(1)用量角器的.中心點與角的頂點重合
(2)零刻度線與角的一邊重合(可與內零度刻度線重合;也可與外零度刻度線重合)
(3)另一條邊所對的角的度數,就是這個角的度數。
5、小結:同一個角無論是用內刻度量角,還是用外刻度量角,結果都一樣。
6、獨立練習測量角的度數(書做一做中第一題1,3與第二題)
(1) 獨立測量,師注意查看學生中存在的問題。
(2) 課件演示糾正問題
三、度、分、秒的進位制及這些單位間的互化
為了更精細地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.
1°=60′,1′=60″;
1′=( )°,1″=( )′.
例1 將57.32°用度、分、秒表示.
解:先把0.32°化為分,
0.32°=60′×0.32=19.2′.
再把0.2′化為秒,
0.2′=60″×0.2=12″.
所以 57.32″=57°19′12″.
例2 把10°6′36″用度表示.
解:先把36″化為分,
36″=( )′×36=0.6′
6′+0.6′=6.6′.
再把6.6′化為度,
6.6′=( )°×6.6=0.11°.
所以 10°6′36″=10.11°.
四、鞏固練習
課本P122練習
五、總結:請大家回憶一下,今天都學了那些知識,通過學習你想說些什么?
六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)
教學準備
教學目標
解三角形及應用舉例
教學重難點
解三角形及應用舉例
教學過程
一.基礎知識精講
掌握三角形有關的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數問題.
二.問題討論
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的`討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數的有關性質.
例6:在某海濱城市附近海面有一臺風,據檢測,當前臺風中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。
一. 小結:
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
2.利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):P80闖關訓練
一、說教材
教材是連接教師和學生的紐帶,在整個教學過程中起著至關重要的作用,所以,先談談我對教材的理解。
正弦函數的性質是選自北師大版高中數學必修四第一章三角函數第五節(jié)正弦函數的性質與圖象5。3正弦函數的性質的資料,主要資料便是正弦函數的性質,教材經過作圖、觀察、誘導公式等方法得出正弦函數y=sinx的性質。并且教材突出了正弦函數圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數的性質。
二、說學情
合理把握學情是上好一堂課的基礎,本次課所應對的學生群體具有以下特點。
高中的學生掌握了必須的基礎知識,思維較敏捷,動手能力較強,但理解能力、自主學習能力較缺乏?;诖?,本節(jié)課注重引導學生動腦思考,更富有啟發(fā)性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發(fā)言,還能夠對學生進行正確引導。
三、說教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維目標:
(一)知識與技能
會用正弦函數圖象研究和理解正弦函數的性質,能熟練運用正弦函數的性質解決問題。
(二)過程與方法
經過正弦函數的圖象,探索正弦函數的性質,提升邏輯思考、歸納總結的能力。
(三)情感態(tài)度價值觀
經過本節(jié)的`學習體驗數學的嚴謹性,養(yǎng)成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。
四、說教學重難點
本著新課程標準,吃透教材,了解學生特點的基礎上我確定了以下重難點
(一)教學重點
由正弦函數的圖象得到正弦函數的性質。
(二)教學難點
正弦函數的周期性和單調性。
五、說教法和學法
此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節(jié)課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的學答中向學問轉變,從學會到會學,成為真正學習的主人。
六、說教學過程
在這節(jié)課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,限度的調動學生參與課堂的積極性、主動性。
(一)新課導入
首先是導入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復習的導入方法。
我會讓學生回憶正弦函數的概念,以及上節(jié)課所學的正弦函數圖象,讓學生根據圖象思考正弦函數有哪些性質從而引出課題——《正弦函數的性質》。
這樣設計能夠讓學生對前面的知識進行充分的回顧,為本節(jié)課的順利開展奠定基礎。
(二)新知探索
接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進行。
讓學生自我經過五點作圖法畫出正弦函數的圖象,并在大屏幕上展示正弦函數的標準圖象。
學生一邊看投影,一邊思考如下問題:
(1)正弦函數的定義域是什么
(2)正弦函數的值域是什么
(3)正弦函數的最值情景如何
(4)正弦函數的周期
(5)正弦函數的奇偶性
(6)正弦函數的遞增區(qū)間
給學生十分鐘的時間小組討論,之后小組代表發(fā)言,師生共同總結。
1、定義域:y=sinx定義域為R
2、值域:引導學生回憶單位圓中的正弦函數線,發(fā)現值域為[—1,1]
3、最值:根據值域的確定得到在何處取得最值以及函數的正負性。
4、周期性:經過觀察圖象引導學生發(fā)現正弦函數的圖象是有規(guī)律不斷重復出現的,讓學生思考后發(fā)現是每隔2π重復出現一次,得出y=sinx的最小正周期是2π。之后經過誘導公式證明。
5、奇偶性:在剛才經過誘導公式證明后順勢提出公式,總結得到正弦函數是奇函數。
6、單調性:最終讓學生根據剛才所得到的結論自我嘗試總結正弦函數的單調性。
在探究完正弦函數性質后,利用單位圓和正弦函數圖象理解和記憶正弦函數的性質,這樣的安排能夠讓學生及時鞏固正弦函數的性質,并且還能夠結合之前所學的單位圓,三角函數線等知識,讓學生感受到知識間的聯系。
(三)課堂練習
第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點法畫出函數的簡圖,并根據圖象討論它的性質。
經過這樣的練習,既鞏固了學生學過的知識,又進一步培養(yǎng)了學生理解、分析、推理的能力,趣味的知識在學生們的積極主動的探索中顯得更有味道。
(四)小結作業(yè)
最終一個環(huán)節(jié)為小結作業(yè)環(huán)節(jié),關于課堂小結,我打算讓學生自我來總結。這樣既發(fā)揮了學生的主體性,又能夠提高學生的總結概括能力,讓我在第一時間得到學習反饋,及時加以疏導。
在作業(yè)布置上,我讓學生思考余弦函數的圖象與性質是什么樣的。
經過比較靈活的題目呈現,能夠讓學生結合本節(jié)課的知識進而思考后續(xù)的知識。
七、說板書設計
我的板書設計遵循簡介明了突出重點部分,以下是我的板書設計:
(略)
函數的奇偶性
函數的奇偶性是函數的重要性質,是對函數概念的深化.它把自變量取相反數時函數值間的關系定量地聯系在一起,反映在圖像上為:偶函數的圖像關于y軸對稱,奇函數的圖像關于坐標原點成中心對稱.這樣,就從數、形兩個角度對函數的奇偶性進行了定量和定性的分析.教材首先通過對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實例.最后,為加強前后聯系,從各個角度研究函數的性質,講清了奇偶性和單調性的.聯系.這節(jié)課的重點是函數奇偶性的定義,難點是根據定義判斷函數的奇偶性.
教學目標:
1.通過具體函數,讓學生經歷奇函數、偶函數定義的討論,體驗數學概念的建立過程,培養(yǎng)其抽象的概括能力.
2.理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡單函數的奇偶性.
3.在經歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數學既是抽象的又是具體的任務分析
這節(jié)內容學生在初中雖沒學過,但已經學習過具有奇偶性的具體的函數:正比例函數y=kx,反比例函數,(k≠0),二次函數y=ax,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學生理解.在引入概念時始終結合具體函數的圖像,以增加直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數的幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個角度去分析,讓學生理解:奇函數、偶函數的定義域是關于原點對稱的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想效果.
一、問題情景
1.觀察如下兩圖,思考并討論以下問題:
(1)這兩個函數圖像有什么共同特征?
(2)相應的兩個函數值對應表是如何體現這些特征的?可以看到兩個函數的圖像都關于y軸對稱.從函數值對應表可以看到,當自變量x取一對相反數時,相應的兩個函數值相同.
對于函數f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數y=x2為偶函數.
2.觀察函數f(x)=x和f(x)=的圖像,并完成下面的兩個函數值對應表,然后說出這兩個函數有什么共同特征.
22可以看到兩個函數的圖像都關于原點對稱.函數圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數時,相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時,稱函數y=f(x)為奇函數.
二、建立模型
由上面的分析討論引導學生建立奇函數、偶函數的定義
1.奇、偶函數的定義
如果對于函數f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.如果對于函數f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.
2.提出問題,組織學生討論
(1)如果定義在R上的函數f(x)滿足f(-2)=f(2),那么f(x)是偶函數嗎? (f(x)不一定是偶函數)
(2)奇、偶函數的圖像有什么特征?
(奇、偶函數的圖像分別關于原點、y軸對稱) (3)奇、偶函數的定義域有什么特征? (奇、偶函數的定義域關于原點對稱)
三、解釋應用[例題]
1.判斷下列函數的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數f(x)是奇函數,當x>0時,f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x0,∴f(-x)=-x(1-x),
而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.
解:先結合圖像特征:偶函數的圖像關于y軸對稱,猜想f(x)在(0,+∞)上是增函數,證明如下:
任取x1>x2>0,則-x1
∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).又f(x)是偶函數,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函數.
思考:奇函數或偶函數在關于原點對稱的兩個區(qū)間上的單調性有何關系?
[練習]
1.已知:函數f(x)是奇函數,在[a,b]上是增函數(b>a>0),問f(x)在[-b,-a]上的單調性如何.
2. f(x)=-x3|x|的大致圖像可能是()
3.函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿足什么條件時,(1)函數f(x)是偶函數.(2)函數f(x)是奇函數. 4.設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函數,又是偶函數的函數嗎?若有,有多少個? 2.設f(x),g(x)分別是R上的奇函數,偶函數,試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數.
4.一個定義在R上的函數,是否都可以表示為一個奇函數與一個偶函數的和的形式?
教學目標:
1.掌握基本事件的概念;
2.正確理解古典概型的兩大特點:有限性、等可能性;
3.掌握古典概型的概率計算公式,并能計算有關隨機事件的概率.
教學重點:
掌握古典概型這一模型.
教學難點:
如何判斷一個實驗是否為古典概型,如何將實際問題轉化為古典概型問題.
教學方法:
問題教學、合作學習、講解法、多媒體輔助教學.
教學過程:
一、問題情境
1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取一張,則抽到的牌為紅心的概率有多大?
二、學生活動
1.進行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發(fā)現工作量較大且不夠準確;
2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現這5種情況的可能性都相等;
(2)6個;即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,
這6種情況的可能性都相等;
三、建構數學
1.介紹基本事件的概念,等可能基本事件的'概念;
2.讓學生自己總結歸納古典概型的兩個特點(有限性)、(等可能性);
3.得出隨機事件發(fā)生的概率公式:
四、數學運用
1.例題.
例1
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現從中任意抽取2張共有多少個基本事件?(用枚舉法,列舉時要有序,要注意“不重不漏”)
探究(1):一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個基本事件?該實驗為古典概型嗎?(為什么對球進行編號?)
探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個基本事件,對嗎?
學生活動:探究(1)如果不對球進行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實上“摸到兩白”的機會要比“摸到兩黑”的機會大.記白球為1,2,3號,黑球為4,5號,通過枚舉法發(fā)現有10個基本事件,而且每個基本事件發(fā)生的可能性相同.
探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個基本事件.
(設計意圖:加深對古典概型的特點之一等可能基本事件概念的理解.)
例2
一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中
一次摸出2只球,則摸到的兩只球都是白球的概率是多少?
問題:在運用古典概型計算事件的概率時應當注意什么?
①判斷概率模型是否為古典概型
②找出隨機事件A中包含的基本事件的個數和試驗中基本事件的總數.
教師示范并總結用古典概型計算隨機事件的概率的步驟
例3
同時拋兩顆骰子,觀察向上的點數,問:
(1)共有多少個不同的可能結果?
(2)點數之和是6的可能結果有多少種?
(3)點數之和是6的概率是多少?
問題:如何準確的寫出“同時拋兩顆骰子”所有基本事件的個數?
學生活動:用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個數和試驗中基本事件的總數.
問題:點數之和是3的倍數的可能結果有多少種?
(介紹圖表法)
例4
甲、乙兩人作出拳游戲(錘子、剪刀、布),求:
(1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.
設計意圖:進一步提高學生對將實際問題轉化為古典概型問題的能力.
2.練習.
(1)一枚硬幣連擲3次,只有一次出現正面的概率為_________.
(2)在20瓶飲料中,有3瓶已過了保質期,從中任取1瓶,取到已過保質期的飲料的概率為_________..
(3)第103頁練習1,2.
(4)從1,2,3,…,9這9個數字中任取2個數字,
①2個數字都是奇數的概率為_________;
②2個數字之和為偶數的概率為_________.
五、要點歸納與方法小結
本節(jié)課學習了以下內容:
1.基本事件,古典概型的概念和特點;
2.古典概型概率計算公式以及注意事項;
3.求基本事件總數常用的方法:列舉法、圖表法.
一、教學目標:
1.掌握用待定系數法求三角函數解析式的方法;
2.培養(yǎng)學生用已有的知識解決實際問題的能力;
3.能用計算機處理有關的近似計算問題.
二、重點難點:
重點是待定系數法求三角函數解析式;
難點是選擇合理數學模型解決實際問題.
三、教學過程:
【創(chuàng)設情境】
三角函數能夠模擬許多周期現象,因此在解決實際問題中有著廣泛的應用.
【自主學習探索研究】
1.學生自學完成P42例1
點O為做簡諧運動的物體的平衡位置,取向右的方向為物體位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運動到距平衡位置最遠處時開始計時.
(1)求物體對平衡位置的位移x(cm)和時間t(s)之間的函數關系;
(2)求該物體在t=5s時的位置.
(教師進行適當的評析.并回答下列問題:據物理常識,應選擇怎樣的函數式模擬物體的運動;怎樣求和初相位θ;第二問中的“t=5s時的位置”與函數式有何關系?)
2.講解p43例2(題目加已改變)
3.講析P44例3
海水受日月的引力,在一定的時候發(fā)生漲落的現象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情況下,船在漲潮時駛進航道,靠近船塢;卸貨后落潮是返回海洋.下面給出了某港口在某季節(jié)每天幾個時刻的水深.
(1)選用一個三角函數來近似描述這個港口的水深與時間的函數關系,并給出在整點時的近似數值.
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與海底的距離),該船何時能進入港口?在港口能呆多久?
(3)若船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時0.3米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
問題:
(1)選擇怎樣的數學模型反映該實際問題?
(2)圖表中的最大值與三角函數的哪個量有關?
(3)函數的周期為多少?
(4)“吃水深度”對應函數中的哪個字母?
4.學生完成課本P45的練習1,3并評析
【提煉總結】
從以上問題可以發(fā)現三角函數知識在解決實際問題中有著十分廣泛的應用,而待定系數法是三角函數中確定函數解析式最重要的方法.三角函數知識作為數學工具之一,在以后的學習中將經常有所涉及.學數學是為了用數學,通過學習我們逐步提高自己分析問題解決問題的能力.
四、布置作業(yè):
P46習題1.3第14、15題
幼師資料《高中數學三角函數PPT內容優(yōu)秀課件(優(yōu)選10篇)》一文希望您能收藏!“幼兒教師教育網”是專門為給您提供幼師資料而創(chuàng)建的網站。同時,yjs21.com還為您精選準備了高中數學課件專題,希望您能喜歡!
相關推薦
高中數學作文三大主科之一,對高考的拉分起到很大的作用。做好一個完整的高中數學教學工作計劃,才能使工作更加有效的快速完成。以下是小編為大家整理的高三數學教學工作計劃(精選9篇),希望能夠幫助到大家。高中數學三角函數教學計劃方案 篇1一、指導思想以學校和高三年部的教學計劃為目標,深化鉆研教材...
在學習中,大家都經常接觸主題班會吧?主題班會會前需要充分的準備,盡可能發(fā)揮每個人的專長、愛好和創(chuàng)造性。你知道什么樣的主題班會才是好的主題班會嗎?下面是小編收集整理的開學第一課主題班會的課件,歡迎大家分享。暑假后開學第一課ppt內容課件 篇1教學目標:1.回顧上學期的各科成績,明確取得成功...
【活動目標】 1、在拼圖的過程中感知三角形與正方形、長方形三者之間的拼合關系,體驗圖形的空間變化。 2、樂意操作,大膽嘗試,感受拼圖活動帶來的快樂。 【活動準備】 物質準備: 1、等腰直角三角形卡片若...
最新更新